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Contribution highlights
We conduct the non-convergence analysis of the probabilistic direct search (PDS). With the help
of the non-convergence theory, we

• theoretically explain the non-convergence phenomenon of PDS,

• and find out the behavior of PDS is closely related to the random series

S(κ) =

∞∑
k=1

k−1∏
ℓ=0

γ1−Yℓ(κ)θYℓ(κ).

Non-convergence analysis can

• verify whether your assumption for convergence is essential,

• deepen our understanding of mathematical tools we use,

• provide new perspectives on convergence analysis,

• guide the choice of algorithmic parameters.

Introduction

Derivative-free optimization (DFO) is a
major class of optimization methods that

• do not use derivatives (first-order info.), only use
function values,

• and is closely related to zeroth-order/black-box
optimization,

• and have various applications such as

Direct-search methods are a popular class of
DFO methods that decide the iterates based on
“simple” comparisons of function values.
Probabilistic direct search is an efficient
offspring of direct search and randomization
techniques. The algorithm is shown as follows.

Existing convergence result

We consider the typical choice of {Dk} in [GRVZ
2015] that each direction set {Dk} is consist of m
independent and identically distributed random
vectors following uniform distribution in the unit
sphere in Rn. Here m is another hyperparameter
of the algorithm PDS. Mathematically speaking,
we have the following theorem.

If Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1), then

PDS converges a.s. if

m > log2

(
1− log θ

log γ

)
.

Naive question & simple test

Questions:

•What will happen if

m ≤ log2

(
1− log θ

log γ

)
?

Simple test:

•Objective function: f (x) = xTx/2,

• Initial point: x0 = (−10, 0)T,

• Stopping criterion: αk ≤ machine epsilon,

•Number of experiments: 100, 000,

•Parameters of PDS: α0 = 1, θ = 0.25, γ = 1.5,
m = 2, which render

m = 2 < 2.143 ≈ log2

(
1− log θ

log γ

)
.

Test results:

Note: each black dot represents the output
point of one run of PDS.

Sketch of analysis

Key ingredients

An important series:

S(κ) =

∞∑
k=1

k−1∏
ℓ=0

γ1−Yℓ(κ)θYℓ(κ),

where

Yℓ(κ) = 1(cm (Dℓ,−∇f (xℓ)) ≥ κ)

and

cm(D, v) = max
d∈D

d⊤v

∥d∥∥v∥
.

p-probabilistically ascent: for each k ≥ 0,

P (cm (Dk,−gk)≤ 0 | Fk−1) ≥ p.

Main results w.r.t. S(κ)

New convergence result w.r.t. S(κ):
If there exists a κ > 0 such that S(κ) = ∞ a.s.,
then PDS converges a.s.
Convergence of S(0):
If {Dk} is p-probabilistically ascent with p > p∗,
where

p∗ = 1− p0 =
log γ

log(θ−1γ)
,

then we have S(0) < ∞ a.s. and

P (S(0) < ζ) > 0 ⇐⇒ ζ >
θ

1− θ
.

Main theorems

Relation between convergence results:

p0-probabilistically κ-descent ⇒ S(κ) = ∞ a.s.

Non-convergence theorem:
Assume that f is smooth, convex, and has a
solution set S∗. If {Dk} is p-probabilistically
ascent with p > p∗, then

P

(
lim inf
k→∞

dist(xk,S∗) > 0

)
> 0,

provided that dist(x0,S∗) > α0/(1− θ).
Non-convergence under the typical case:

Let Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1).

Then PDS is non-convergent if

m < log2

(
1− log θ

log γ

)
.

Tightness of the analysis

Question: Can p-probabilistically ascent with
p ≥ p∗ instead of p > p∗ lead to non-convergence?
Answer: No. Following is an implementation of
PDS that is p∗-probabilistically ascent but
converges a.s.

• θ = 1/2 and γ = 2, which implies q∗ = 1/2;

•Dk = {gk/∥gk∥} or {−gk/∥gk∥} with probability
1/2, respectively.
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