Non-convergence Analysis of Probabilistic Direct Search

Cunxin Huang Co-supervised by Dr. Zaikun Zhang and Prof. Xiaojun Chen

Graduate Student Forum of ORSC Mathematical Programming Branch Chongqing, China, 2023

Department of Applied Mathematics The Hong Kong Polytechnic University 1. Preliminaries

What is derivative-free optimization and why Probabilistic direct search

- 2. Non-convergence analysis Motivation and basic idea Main results
- 3. Tightness of analysis
 - Almost zero gap
 - Tightness of assumptions
- 4. Conclusions

Preliminaries

Derivative-free optimization (DFO)

- \cdot A branch of optimization
- Do not use derivatives (only use function evaluations)

Derivative-free optimization (DFO)

- \cdot A branch of optimization
- Do not use derivatives (only use function evaluations)

Why DFO?

- Derivatives are not available
- Problems are often noisy (finite difference?)
- Function evaluations are expensive (e.g.: PDE simulation)

Derivative-free optimization (DFO)

- A branch of optimization
- Do not use derivatives (only use function evaluations)

Why DFO?

- Derivatives are not available
- Problems are often noisy (finite difference?)
- Function evaluations are expensive (e.g.: PDE simulation)

Typical situation: black box $x \in \mathbb{R}^n \longrightarrow f: \mathbb{R}^n \to \mathbb{R} \longrightarrow f(x)$

Derivative-free optimization (DFO)

- A branch of optimization
- Do not use derivatives (only use function evaluations)

Why DFO?

- Derivatives are not available
- Problems are often noisy (finite difference?)
- Function evaluations are expensive (e.g.: PDE simulation)

Nuclear Physics

Machine Learning

Cosmology

In this talk, we consider the unconstrained problem

 $\min_{x \in \mathbb{R}^n} f(x),$

where

- + ∇f is Lipschitz continuous, although it cannot be evaluated,
- \cdot f is bounded below.

Input: $x_0 \in \mathbb{R}^n$, $\alpha_0 \in (0, \infty)$, $0 < \theta < 1 < \gamma$.

Input: $x_0 \in \mathbb{R}^n$, $\alpha_0 \in (0, \infty)$, $0 < \theta < 1 < \gamma$. for $k = 0, 1, \dots$ do

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), 0 < \theta < 1 < \gamma.
for k = 0, 1, \dots do
Select a finite set D_k \subset \mathbb{R}^n randomly.
```

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), 0 < \theta < 1 < \gamma.
```

```
for k = 0, 1, ... do
```

```
Select a finite set D_k \subset \mathbb{R}^n randomly.
```

```
(In this talk, assume D_k is a set of unit vectors for simplicity.)
```

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), 0 < \theta < 1 < \gamma.
```

```
for k = 0, 1, ... do
Select a finite set D_k \subset \mathbb{R}^n randomly.
(In this talk, assume D_k is a set of unit vectors for simplicity.)
if f(x_k + \alpha_k d) < f(x_k) - \alpha_k^2 for some d \in D_k then
```

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), 0 < \theta < 1 < \gamma.

for k = 0, 1, ... do

Select a finite set D_k \subset \mathbb{R}^n randomly.

(In this talk, assume D_k is a set of unit vectors for simplicity.)

if f(x_k + \alpha_k d) < f(x_k) - \alpha_k^2 for some d \in D_k then

Expand step size, and move to that point

Set \alpha_{k+1} = \gamma \alpha_k and x_{k+1} = x_k + \alpha_k d.

else

Shrink step size, and stand still
```

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), 0 < \theta < 1 < \gamma.
for k = 0, 1, ... do
    Select a finite set D_k \subset \mathbb{R}^n randomly. How to select?
    (In this talk, assume D_k is a set of unit vectors for simplicity.)
    if f(x_k + \alpha_k d) < f(x_k) - \alpha_k^2 for some d \in D_k then
         Expand step size, and move to that point
         Set \alpha_{k+1} = \gamma \alpha_k and x_{k+1} = x_k + \alpha_k d.
    else
         Shrink step size, and stand still
        Set \alpha_{k+1} = \theta \alpha_k and x_{k+1} = x_k.
```

Typical choice: $D_k = \{d_1, \ldots, d_m\}$, where $d_i \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\mathcal{S}^{n-1})$

Convergence theory

Definition (Cosine measure)

Cosine measure for a finite set of nonzero vectors $D \subseteq \mathbb{R}^n$ w.r.t. a given vector $v \in \mathbb{R}^n$:

$$\operatorname{cm}(D, v) = \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|}.$$

Convergence theory

Definition (Cosine measure)

Cosine measure for a finite set of nonzero vectors $D \subseteq \mathbb{R}^n$ w.r.t. a given vector $v \in \mathbb{R}^n$:

$$\operatorname{cm}(D, v) = \max_{d \in D} \frac{d^{+}v}{\|d\| \|v\|}.$$

Example

Convergence theory

Definition (Cosine measure)

Cosine measure for a finite set of nonzero vectors $D \subseteq \mathbb{R}^n$ w.r.t. a given vector $v \in \mathbb{R}^n$:

$$\operatorname{cm}(D, v) = \max_{d \in D} \frac{d^{+}v}{\|d\| \|v\|}.$$

Example

Measure the ability that "D approximates v"
Convergence theory

Definition (*p*-probabilistically κ-descent)

 $(D_k)_{k\geq 0}$ is said to be p-probabilistically κ -descent, if

 $\mathbb{P}\left(\operatorname{cm}(D_k,-g_k)\geq\kappa\mid D_0,\ldots,D_{k-1}\right)\ \geq\ p\quad\text{for each }k\geq0,$

where $g_k = \nabla f(x_k)$.

Convergence theory

Definition (*p*-probabilistically κ -descent)

 $(D_k)_{k\geq 0}$ is said to be p-probabilistically κ -descent, if

```
\mathbb{P}\left(\operatorname{cm}(D_k,-g_k)\geq\kappa\mid D_0,\ldots,D_{k-1}\right)\ \geq\ p\quad\text{for each }k\geq0,
```

where $g_k = \nabla f(x_k)$.

Intuition:

each D_k is "good enough with lower-bounded probability", no matter what happened before

Convergence theory

Definition (*p*-probabilistically *k*-descent)

 $(D_k)_{k\geq 0}$ is said to be p-probabilistically κ -descent, if

```
\mathbb{P}\left(\operatorname{cm}(D_k,-g_k)\geq\kappa\mid D_0,\ldots,D_{k-1}\right)\ \geq\ p\quad\text{for each }k\geq0,
```

where $g_k = \nabla f(x_k)$.

Intuition:

each D_k is "good enough with lower-bounded probability", no matter what happened before

Theorem (Gratton et al. 2015)

If $(D_k)_{k\geq 0}$ is *p*-probabilistically κ -descent with $\kappa > 0$ and

 $p = \log \theta / \log(\gamma^{-1}\theta),$

then PDS converges with probability 1.

Corollary (Gratton et al. 2015) If $D_k = \{d_1, \dots, d_m\}$, where $d_i \stackrel{i.i.d.}{\sim} Unif(S^{n-1})$, then PDS is convergent if $m > \log_2\left(1 - \frac{\log \theta}{\log \gamma}\right)$.

Corollary (Gratton et al. 2015)

If $D_k = \{d_1, \dots, d_m\}$, where $d_i \stackrel{i.i.d.}{\sim} \text{Unif}(S^{n-1})$, then PDS is convergent if $m > \log_2\left(1 - \frac{\log \theta}{\log \gamma}\right)$.

A natural question: what if

$$m \leq \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right)?$$

A natural question: what if

$$m \leq \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right)?$$

Non-convergence analysis

Many well-known algorithms have non-convergence analysis.

- S. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. In Y. Bengio, Y. LeCun, T. Sainath, I. Murray, M. Ranzato, and O. Vinyals, editors, *International Conference on Learning Representations (ICLR 2018)*. Curran Associates, Inc., 2018.
- C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. *Math. Program.*, 155:57-79, 2016.
- W. Mascarenhas. The divergence of the BFGS and Gauss Newton methods. *Math. Program.*, 147:253-276, 2014.

Recall *p*-probabilistically κ -descent:

 $\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)\geq\kappa\mid D_{0},\ldots,D_{k-1}\right)\geq p\quad\text{for each }k\geq0.$

Recall *p*-probabilistically κ -descent:

 $\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)\geq\kappa\mid D_{0},\ldots,D_{k-1}\right)\geq p\quad\text{for each }k\geq0.$

q-probabilistically ascent

 $\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)>0\mid D_{0},\ldots,D_{k-1}\right) \leq q \quad \text{for each } k\geq 0.$

q-probabilistically ascent

q-probabilistically ascent

 $(D_k)_{k\in\mathbb{N}} \text{ is } \\ q\text{-probabilistically ascent}$

 $(D_k)_{k\in\mathbb{N}} \text{ is } \\ q\text{-probabilistically ascent} \\ \clubsuit \\ \alpha_k \text{ shrinks with high probability} \\$

• Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -g_k) > 0\}}$ Indicator for "good" event

- Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -g_k) > 0\}}$ Indicator for "good" event
- $\alpha_{k+1} \leq \gamma^{Y_k} \theta^{1-Y_k} \alpha_k$, when f is convex

- Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -g_k) > 0\}}$ Indicator for "good" event
- $\alpha_{k+1} \leq \gamma^{Y_k} \theta^{1-Y_k} \alpha_k$, when f is convex

•
$$\alpha_k \leq \alpha_0 \prod_{i=0}^{k-1} \gamma^{Y_i} \theta^{1-Y_i} =: \alpha_0 U_k$$

- Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -g_k) > 0\}}$ Indicator for "good" event
- $\alpha_{k+1} \leq \gamma^{Y_k} \theta^{1-Y_k} \alpha_k$, when f is convex

•
$$\alpha_k \leq \alpha_0 \prod_{i=0}^{k-1} \gamma^{Y_i} \theta^{1-Y_i} =: \alpha_0 U_k$$

• $\sum_{k=1}^{\infty} \alpha_k \le \alpha_0 \sum_{k=1}^{\infty} U_k$

- Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -g_k) > 0\}}$ Indicator for "good" event
- $\alpha_{k+1} \leq \gamma^{Y_k} \theta^{1-Y_k} \alpha_k$, when f is convex

•
$$\alpha_k \leq \alpha_0 \prod_{i=0}^{k-1} \gamma^{Y_i} \theta^{1-Y_i} =: \alpha_0 U_k$$

• $\sum_{k=1}^{\infty} \alpha_k \leq \alpha_0 \sum_{k=1}^{\infty} U_k < \infty$ a.s. ?

Key to analysis

- Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -g_k) > 0\}}$ Indicator for "good" event
- $\alpha_{k+1} \leq \gamma^{Y_k} \theta^{1-Y_k} \alpha_k$, when f is convex k-1

•
$$\alpha_k \leq \alpha_0 \prod_{i=0}^{K} \gamma^{Y_i} \theta^{1-Y_i} =: \alpha_0 U_k$$

•
$$\sum_{k=1}^{\infty} \alpha_k \leq \alpha_0 \sum_{k=1}^{\infty} U_k < \infty$$
 a.s. ?

Under q-probabilistically ascent assumption, can we find a constant ζ such that

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \zeta\right) > 0?$$

Assumption

 $\mathbb{P}\left(\operatorname{cm}\left(D_{k}, -g_{k}\right) \leq 0 \mid D_{0}, \dots, D_{k-1}\right) \geq q > q_{0} \quad \text{for each } k \geq 0,$ where $q_{0} = 1 - p_{0} = \log \gamma / \log(\theta^{-1}\gamma).$

Assumption

 $\mathbb{P}\left(Y_k = 0 \mid Y_0, \dots, Y_{k-1}\right) \ge q > q_0 \quad \text{for each } k \ge 0,$ where $q_0 = 1 - p_0 = \log \gamma / \log(\theta^{-1}\gamma).$

Assumption

$$\mathbb{P}\left(Y_k = 0 \mid Y_0, \dots, Y_{k-1}\right) \geq q > q_0 \quad \text{for each } k \geq 0,$$

where $q_0 = 1 - p_0 = \log \gamma / \log(\theta^{-1} \gamma)$.

Result

 $\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \infty\right) = 1$

 $\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \zeta\right) > 0 \quad \Longleftrightarrow \quad \zeta > \frac{\theta}{1-\theta}$

2		
Ζ		
_	-	

1.

Assumption

$$\mathbb{P}\left(Y_k = 0 \mid Y_0, \dots, Y_{k-1}\right) \geq q > q_0 \quad \text{for each } k \geq 0,$$

where $q_0 = 1 - p_0 = \log \gamma / \log(\theta^{-1} \gamma)$.

Result

1.

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \infty\right) = 1$$

2.

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \zeta\right) > 0 \quad \Longleftrightarrow \quad \zeta > \frac{\theta}{1-\theta}$$

Note that
$$\sum_{k=1}^{\infty} U_k = \sum_{k=1}^{\infty} \prod_{i=0}^{k-1} \gamma^{Y_i} \theta^{1-Y_i} \ge \theta/(1-\theta)$$

Assumption

$$\mathbb{P}\left(Y_k = 0 \mid Y_0, \dots, Y_{k-1}\right) \geq q > q_0 \quad \text{for each } k \geq 0,$$

where $q_0 = 1 - p_0 = \log \gamma / \log(\theta^{-1} \gamma)$.

Result 1. $\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \infty\right) = 1$ 2. $\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \zeta\right) > 0 \iff \zeta > \frac{\theta}{1-\theta}$

Assumption

$$\liminf_{k \to \infty} \mathbb{P}\left(Y_k = 0 \mid Y_0, \dots, Y_{k-1}\right) > q_0,$$

where $q_0 = 1 - p_0 = \log \gamma / \log(\theta^{-1}\gamma)$.

Result

1.

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \infty\right) = 1$$

2.

Tightness of analysis

Let $D_k = \{d_1, \ldots, d_m\}$, where $d_i \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\mathcal{S}^{n-1})$. Recall that PDS is convergent if

$$m > \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right).$$

Let $D_k = \{d_1, \ldots, d_m\}$, where $d_i \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\mathcal{S}^{n-1})$. Recall that PDS is convergent if

$$m > \log_2\left(1 - \frac{\log \theta}{\log \gamma}\right).$$

With our non-convergence analysis, PDS is non-convergent if

$$m < \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right).$$

Tightness of assumption

Natural question:

$$\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)\leq0\mid D_{0},\ldots,D_{k-1}\right)\geq q \geq q_{0},$$

Tightness of assumption

Natural question:

 $\mathbb{P}\left(\operatorname{cm}\left(D_k,-g_k\right) \leq 0 \mid D_0,\ldots,D_{k-1}\right) \geq q \ge q_0,$ Answer: NO

Tightness of assumption

Natural question:

 $\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)\leq0\mid D_{0},\ldots,D_{k-1}\right)\geq q\nearrow\geq q_{0},$ Answer: NO

Example

We assume

- $\cdot \ f: \mathbb{R}^n \rightarrow \mathbb{R}$ be gradient Lipschitz and strongly convex,
- + heta=1/2 and $\gamma=2$, $\Rightarrow q_0=1/2$
- $D_k = \{g_k / ||g_k||\}$ or $D_k = \{-g_k / ||g_k||\}$ with probability 1/2, respectively,

then we have

$$\mathbb{P}\left(\lim_{k \to \infty} \|g_k\| = 0\right) = 1.$$

Conclusions
In this talk

- Non-convergence analysis for probabilistic direct search
- Tightness of non-convergence analysis

In this talk

- Non-convergence analysis for probabilistic direct search
- Tightness of non-convergence analysis

Future work

- Estimate the non-convergence probability
- Conduct non-convergence analysis for other frameworks

Thank you!

References I

- Biviano, A. et al. (2013). "CLASH-VLT: the mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 galaxy cluster MACS J1206.2-0847". A&A 558, A1:1–A1:22.
- Conn, A. R., Scheinberg, K., and Vicente, L. N. (2009). Introduction to Derivative-Free Optimization. Vol. 8. MOS-SIAM Ser. Optim. Philadelphia: SIAM.
- Durrett, R. (2010). Probability: Theory and Examples. Fourth. Camb. Ser. Stat. Probab. Math. Cambridge: Cambridge University Press.
- Fermi, E. and Metropolis, N. (1952). Numerical solution of a minimum problem. Tech. rep. Alamos National Laboratory, Los Alamos, USA.

References II

- Ghanbari, H. and Scheinberg, K. (2017). "Black-box optimization in machine learning with trust region based derivative free algorithm". arXiv:1703.06925.
- Gratton, S. et al. (2015). "Direct search based on probabilistic descent". SIAM J. Optim. 25, pp. 1515–1541.