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Preliminaries



What is derivative-free optimization and why

Derivative-free optimization (DFO)
• A branch of optimization
• Do not use derivatives (only use function evaluations)

Why DFO?

• Derivatives are not available
• Problems are often noisy (finite difference?)
• Function evaluations are expensive (e.g.: PDE simulation)
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• Problems are often noisy (finite difference?)
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Typical situation: black box

f : Rn → Rx ∈ Rn f(x)
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Basic assumptions

In this talk, we consider the unconstrained problem

min
x∈Rn

f(x),

where

• ∇f is Lipschitz continuous, although it cannot be evaluated,
• f is bounded below.
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Probabilistic direct search (PDS)

Algorithm 1: Probabilistic direct search based on sufficient decrease

Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set Dk ⊂ Rn randomly.

How to select?

(In this talk, assume Dk is a set of unit vectors for simplicity.)
if f(xk + αkd) < f(xk)− α2

k for some d ∈ Dk then
Expand step size, and move to that point
Set αk+1 = γαk and xk+1 = xk + αkd.

else
Shrink step size, and stand still
Set αk+1 = θαk and xk+1 = xk .
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i.i.d.∼ Unif(Sn−1)
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Illustration of how PDS works
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Convergence theory

Definition (Cosine measure)
Cosine measure for a finite set of nonzero vectors D ⊆ Rn w.r.t. a given
vector v ∈ Rn:

cm(D, v) = max
d∈D

d⊤v

∥d∥∥v∥
.

Example

cm(D, v) = cos θ d1

d2

d3

d4

v
θ

Measure the ability that “D approximates v”
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Convergence theory

Definition (p-probabilistically κ-descent)
(Dk)k≥0 is said to be p-probabilistically κ-descent, if

P (cm(Dk,−gk) ≥ κ | D0, . . . , Dk−1) ≥ p for each k ≥ 0,

where gk = ∇f(xk).

Intuition:
each Dk is “good enough with lower-bounded probability”,
no matter what happened before
Theorem (Gratton et al. 2015)
If (Dk)k≥0 is p-probabilistically κ-descent with κ > 0 and

p = log θ/ log(γ−1θ),

then PDS converges with probability 1.
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Practical choice and natural question

Corollary (Gratton et al. 2015)

If Dk = {d1, . . . , dm}, where di
i.i.d.∼ Unif(Sn−1), then PDS is convergent if

m > log2

(
1− log θ

log γ

)
.
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If Dk = {d1, . . . , dm}, where di
i.i.d.∼ Unif(Sn−1), then PDS is convergent if

m > log2

(
1− log θ

log γ

)
.

A natural question: what if

m ≤ log2

(
1− log θ

log γ

)
?
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Non-convergence analysis



Motivation: non-convergence analysis matters

Many well-known algorithms have non-convergence analysis.

• S. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and
beyond. In Y. Bengio, Y. LeCun, T. Sainath, I. Murray, M. Ranzato, and
O. Vinyals, editors, International Conference on Learning
Representations (ICLR 2018). Curran Associates, Inc., 2018.

• C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM for
multi-block convex minimization problems is not necessarily
convergent. Math. Program., 155:57-79, 2016.

• W. Mascarenhas. The divergence of the BFGS and Gauss Newton
methods. Math. Program., 147:253-276, 2014.

• …
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Naive idea of non-convergence

Recall p-probabilistically κ-descent:

P (cm (Dk,−gk)≥ κ | D0, . . . , Dk−1) ≥ p for each k ≥ 0.
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P (cm (Dk,−gk)> 0 | D0, . . . , Dk−1) ≤ q for each k ≥ 0.

cm (Dk,−gk) ≤ 0 No descent direction

f(xk + αkdk) ≥ f(xk) ∀dk ∈ Dkαk shrinks

f convex

non-convergence for convex functions
⇓

non-convergence in general
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Establishment of non-convergence

(Dk)k∈N is
q-probabilistically ascent

αk shrinks with high probability

∞∑
k=0

αk < ∞ a.s. ?

x0 /∈ B̄(x∗,
∑∞

k=0 αk)

P (Convergence) < 1
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Key to analysis

• Define indicator function Yk = 1{cm(Dk,−gk)>0}

Indicator for “good” event

• αk+1 ≤ γYkθ1−Ykαk, when f is convex

• αk ≤ α0

k−1∏
i=0

γYiθ1−Yi =: α0Uk
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• αk+1 ≤ γYkθ1−Ykαk, when f is convex

• αk ≤ α0

k−1∏
i=0

γYiθ1−Yi =: α0Uk

•
∑∞

k=1 αk ≤ α0

∑∞
k=1 Uk < ∞ a.s. ?

Under q-probabilistically ascent assumption, can we find a
constant ζ such that

P

(
∞∑
k=1

Uk < ζ

)
> 0?

12/16



Main results

Assumption

P (cm (Dk,−gk) ≤ 0 | D0, . . . , Dk−1) ≥ q > q0 for each k ≥ 0,

where q0 = 1− p0 = log γ/ log(θ−1γ).

Note that
∑∞

k=1 Uk =
∑∞

k=1

k−1∏
i=0

γYiθ1−Yi≥ θ/(1− θ)
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Main results

Assumption

lim inf
k→∞

P (Yk = 0 | Y0, . . . , Yk−1) > q0,
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Tightness of analysis



Almost zero gap

Let Dk = {d1, . . . , dm}, where di
i.i.d.∼ Unif(Sn−1).

Recall that PDS is convergent if

m > log2

(
1− log θ

log γ

)
.

With our non-convergence analysis, PDS is non-convergent if

m < log2

(
1− log θ

log γ

)
.
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Tightness of assumption

Natural question:
P (cm (Dk,−gk) ≤ 0 | D0, . . . , Dk−1) ≥ q > ≥ q0,

Answer: NO

Example
We assume

• f : Rn → R be gradient Lipschitz and strongly convex,
• θ = 1/2 and γ = 2,⇒ q0 = 1/2

• Dk = {gk/∥gk∥} or Dk = {−gk/∥gk∥} with probability 1/2,
respectively,

then we have
P
(

lim
k→∞

∥gk∥ = 0

)
= 1.
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respectively,

then we have
P
(

lim
k→∞

∥gk∥ = 0

)
= 1.
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• Non-convergence analysis for probabilistic direct search
• Tightness of non-convergence analysis

Future work

• Estimate the non-convergence probability
• Conduct non-convergence analysis for other frameworks

Thank you!
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