
Non-convergence Analysis of
Probabilistic Direct Search

The 25th International Symposium on Mathematical Programming

Cunxin Huang

Joint work with Zaikun Zhang

Montréal, Canada July 26, 2024

The Hong Kong Polytechnic University

Non-convergence Analysis of
Probabilistic Direct Search

The 25th International Symposium on Mathematical Programming

Zaikun Zhang (replacing Cunxin Huang)

Joint work with Cunxin Huang

Montréal, Canada July 26, 2024

The Hong Kong Polytechnic University

PRIMA and my gratitude

libprima.net

PRIMA is an acronym for
“Reference Implementation for Powell’s Methods

with Modernization and Amelioration”.

• Number of lines: > 100,000.
• The total time I spent on PRIMA:

≥ 3 years× 300 days per year× 10 hours per day = 9, 000 hours.

In the past years, due to the gap in my publication record while working
on PRIMA, I needed a lot of support from the community. Thank you for
the help and support, explicit or implicit, known or unknown to me.

Without your support, I would not have survived.
1/30

http://www.libprima.net

Non-convergence analysis: What?

Consider an algorithm

A : Ξ× F×X → X∞, (ξ, f, x0) 7→ {xk}.

• ξ represents algorithmic parameters.
• f is the objective function.
• x0 is the starting point.

When A is deterministic:

• (Global) Convergence analysis: For all (ξ, f, x0) ∈ Ξ̂× F̂×X , prove

{xk} achieves stationarity asymptotically.

• Non-convergence analysis: For all (ξ, f, x0) ∈ Ξ̃× F̃× X̃ , prove

{xk} fails to achieve stationarity asymptotically.

2/30

Non-convergence analysis: What?

Consider an algorithm

A : Ξ× F×X → X∞, (ξ, f, x0) 7→ {xk}.

• ξ represents algorithmic parameters.
• f is the objective function.
• x0 is the starting point.

When A is random:

• (Global) Convergence analysis: For all (ξ, f, x0) ∈ Ξ̂× F̂×X , prove

P ({xk} achieves stationarity asymptotically) = 1.

• Non-convergence analysis: For all (ξ, f, x0) ∈ Ξ̃× F̃× X̃ , prove

P ({xk} fails to achieve stationarity asymptotically) > 0.

2/30

Non-convergence analysis: Why?

• Sharpen our knowledge about the algorithm.
• Deepen our understanding about the convergence analysis.
• Guide the selection of algorithmic parameters.
• Provide new perspectives on convergence analysis.

3/30

Probabilistic Direct Search (PDS)

Derivative-Free
Optimization

Direct
Search

Randomized
Algorithms

The algorithm we consider in this talk:
Probabilistic Direct Search

(Gratton, Royer, Vicente, and Zhang 2015)

4/30

Derivative-Free Optimization (DFO)

Derivative-Free Optimization
• Do not use derivatives (first-order info.), only use function values
• Closely related: zeroth-order/black-box optimization ...

Derivatives are often not available in applications

Quantum Computing Machine Learning Circuit Design

5/30

Direct-search methods and model-based methods

How to determine iterates?

• Direct-search methods: “simple” comparison of function values

• Model-based methods: build a surrogate of the objective function

Direct-search methods1 Model-based methods2

1Source: Kolda, Lewis, and Torczon 2003
2Source: Larson, Menickelly, and Wild 2019

6/30

PDS: a simplified framework

Algorithm 1: Direct Search based on sufficient decrease

Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

7/30

PDS: a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.

for k = 0, 1, . . . do
Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

7/30

PDS: a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

7/30

PDS: a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.

(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

7/30

PDS: a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)

Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

7/30

PDS: a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)

if f(xk + αkdk) < f(xk)− cα2
k then

Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

7/30

PDS: a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)
if f(xk + αkdk) < f(xk)− cα2

k then

Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

7/30

PDS: a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else

Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

7/30

PDS: a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

7/30

PDS: a simplified framework

Algorithm 1: Probabilistic Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn randomly.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

7/30

PDS: a simplified framework

Algorithm 1: Probabilistic Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn randomly.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

7/30

PDS: a simplified framework

Algorithm 1: Probabilistic Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), c ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn randomly.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}.
(complete polling for simplicity)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (GRVZ 2015): Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)
7/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

x∗

x0

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

x0

d1

α0

d2

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

8/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

8/30

A numerical example: CS v.s. PDS with 2 directions

Rosenbrock “banana” function:

f(x) =

n−1∑
i=1

[
(1− xi)

2 + 100(xi+1 − x2
i)

2
]

x
y

f

x

y

9/30

A numerical example: CS v.s. PDS with 2 directions

20 40 60 80 100 120 140 160 180 200

Number of funciton evaluations

10
-1

10
0

10
1

10
2

F
u
n
c
ti
o
n
 v

a
lu

e
s

CS

PDS

n = 2

0 1000 2000 3000 4000 5000

Number of funciton evaluations

10
1

10
2

10
3

10
4

10
5

F
u

n
c
ti
o

n
 v

a
lu

e
s

CS

PDS

n = 50

Function value v.s. number of function evaluations

Worst case complexity of function evaluations (GRVZ 2015)
O(n2ϵ−2) for CS while O(nϵ−2) for PDS

10/30

Cosine measure

Definition (Cosine measure w.r.t. a vector)
Given a finite set D ⊆ Rn\{0} and a vector v ∈ Rn\{0}, define

cm(D, v) = max
d∈D

d⊤v

‖d‖‖v‖
,

which is the cosine measure of D with respect to v.

Example

cm(D, v) = cos θ
d1

d2

d3

d4

v
θ

cm(D, v) measures the ability of D to “approximate” v

11/30

Cosine measure

Definition (Cosine measure w.r.t. a vector)
Given a finite set D ⊆ Rn\{0} and a vector v ∈ Rn\{0}, define

cm(D, v) = max
d∈D

d⊤v

‖d‖‖v‖
,

which is the cosine measure of D with respect to v.

Example

cm(D, v) = cos θ
d1

d2

d3

d4

v
θ

cm(D, v) measures the ability of D to “approximate” v
11/30

Convergence theory

Definition (p-probabilistically κ-descent)
{Dk} is said to be p-probabilistically κ-descent, if

P (cm(Dk,−gk) ≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0,

where gk = ∇f(xk).

Intuitive meaning of p-probabilistically κ-descent
Each Dk is “good enough” with probability at least p

no matter what has happened in the history

Theorem (GRVZ 2015)
If {Dk} is p0-probabilistically κ-descent with κ > 0 and

p0 =
log θ

log(γ−1θ)
,

then PDS converges w.p.1 when f is L-smooth and lower-bounded.

12/30

Convergence theory

Definition (p-probabilistically κ-descent)
{Dk} is said to be p-probabilistically κ-descent, if

P (cm(Dk,−gk) ≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0,

where gk = ∇f(xk).

Intuitive meaning of p-probabilistically κ-descent
Each Dk is “good enough” with probability at least p

no matter what has happened in the history

Theorem (GRVZ 2015)
If {Dk} is p0-probabilistically κ-descent with κ > 0 and

p0 =
log θ

log(γ−1θ)
,

then PDS converges w.p.1 when f is L-smooth and lower-bounded.
12/30

Practical choice and natural questions

Corollary (GRVZ 2015)

If Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1), then PDS converges w.p.1 if

m > log2

(
1− log θ

log γ

)
.

Questions:

• Is p0-probabilistically κ-descent an essential assumption or a
technical one? (Such supermartingale-like assumptions are
ubiquitous in the convergence analysis of randomized methods!)

• What will happen if

m ≤ log2

(
1− log θ

log γ

)
?

13/30

Practical choice and natural questions

Corollary (GRVZ 2015)

If Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1), then PDS converges w.p.1 if

m > log2

(
1− log θ

log γ

)
.

Questions:

• Is p0-probabilistically κ-descent an essential assumption or a
technical one? (Such supermartingale-like assumptions are
ubiquitous in the convergence analysis of randomized methods!)

• What will happen if

m ≤ log2

(
1− log θ

log γ

)
?

13/30

A simple test

• Objective function: f(x) = xTx/2

• Initial point: x0 = (−10, 0)T

• Stopping criterion: αk ≤ machine epsilon
• Number of experiments: 100, 000
• Parameters of PDS: α0 = 1, θ = 0.25, γ = 1.5, m = 2, which render

m = 2 < 2.143 ≈ log2

(
1− log θ

log γ

)

14/30

A simple test (Cont’d)

Note: each black dot represents the output point of one run of PDS.
15/30

Non-convergence study is not rare

Many well-known algorithms have non-convergence examples

• Powell, On search directions for minimization algorithms, 1973.

• Yuan, An example of non-convergence of trust region algorithms, 1998.

• Reddi, Kale, and Kumar, On the convergence of Adam and beyond, 2018.

• Chen, He, Ye, and Yuan, The direct extension of ADMM for multi-block convex
minimization problems is not necessarily convergent, 2016.

• Dai, A perfect example for the BFGS method, 2013.

• Mascarenhas, The divergence of the BFGS and Gauss Newton methods, 2014.

Instead of finding a non-convergence example,
can we develop a theorem?

16/30

Non-convergence study is not rare

Many well-known algorithms have non-convergence examples

• Powell, On search directions for minimization algorithms, 1973.

• Yuan, An example of non-convergence of trust region algorithms, 1998.

• Reddi, Kale, and Kumar, On the convergence of Adam and beyond, 2018.

• Chen, He, Ye, and Yuan, The direct extension of ADMM for multi-block convex
minimization problems is not necessarily convergent, 2016.

• Dai, A perfect example for the BFGS method, 2013.

• Mascarenhas, The divergence of the BFGS and Gauss Newton methods, 2014.

Instead of finding a non-convergence example,
can we develop a theorem?

16/30

An overview of our theory

We assume that f is smooth and convex (explained later).

We denote the optimal solution set of f by S∗.

We will establish the following.
Under some assumption on {Dk} and algorithmic parameters, there
exist choices of x0 such that

P
(
lim inf
k→∞

dist(xk,S∗) > 0

)
> 0.

Differences from a non-convergence example:

one function v.s. some function class
special parameters v.s. conditions for parameters

a specific initial point v.s. a region for initial points

17/30

Assumption on {Dk}: probabilistic ascent

Recall p-probabilistically κ-descent

P (cm (Dk,−gk)≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0.

q-probabilistically ascent

P (cm (Dk,−gk)≤ 0 | D0, . . . ,Dk−1) ≥ q for each k ≥ 0.

Note
If cm (Dk,−gk) ≤ 0, then Dk is “bad” (no descent direction).

18/30

Assumption on {Dk}: probabilistic ascent

Recall p-probabilistically κ-descent

P (cm (Dk,−gk)≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0.

q-probabilistically ascent

P (cm (Dk,−gk)≤ 0 | D0, . . . ,Dk−1) ≥ q for each k ≥ 0.

Note
If cm (Dk,−gk) ≤ 0, then Dk is “bad” (no descent direction).

18/30

Assumption on {Dk}: probabilistic ascent

Recall p-probabilistically κ-descent

P (cm (Dk,−gk)≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0.

q-probabilistically ascent

P (cm (Dk,−gk)≤ 0 | D0, . . . ,Dk−1) ≥ q for each k ≥ 0.

Note
If cm (Dk,−gk) ≤ 0, then Dk is “bad” (no descent direction).

18/30

Why assuming convexity?

cm (Dk,−gk) ≤ 0 No descent direction

f(xk + αkd) ≥ f(xk) ∀d ∈ Dkαk shrinks

f convex

• Convexity connects cm (Dk,−gk) ≤ 0 and shrinking of step size
• {Dk} is probabilistic ascent implies αk “often” shrinks

19/30

Why assuming convexity?

cm (Dk,−gk) ≤ 0 No descent direction

f(xk + αkd) ≥ f(xk) ∀d ∈ Dkαk shrinks

f convex

• Convexity connects cm (Dk,−gk) ≤ 0 and shrinking of step size

• {Dk} is probabilistic ascent implies αk “often” shrinks

19/30

Why assuming convexity?

cm (Dk,−gk) ≤ 0 No descent direction

f(xk + αkd) ≥ f(xk) ∀d ∈ Dkαk shrinks

f convex

• Convexity connects cm (Dk,−gk) ≤ 0 and shrinking of step size
• {Dk} is probabilistic ascent implies αk “often” shrinks

19/30

From probabilistic ascent to non-convergence: How?

{Dk} is probabilistically ascent

αk “often” shrinks

P
(∞∑

k=0

αk is “bounded”
)

> 0 ?

P (non-convergence) > 0 if dist(x0,S∗) is “large”?

20/30

From probabilistic ascent to non-convergence: How?

{Dk} is probabilistically ascent

αk “often” shrinks

P
(∞∑

k=0

αk is “bounded”
)

> 0 ?

P (non-convergence) > 0 if dist(x0,S∗) is “large”?

20/30

From probabilistic ascent to non-convergence: How?

{Dk} is probabilistically ascent

αk “often” shrinks

P
(∞∑

k=0

αk is “bounded”
)

> 0 ?

P (non-convergence) > 0 if dist(x0,S∗) is “large”?

20/30

From probabilistic ascent to non-convergence: How?

{Dk} is probabilistically ascent

αk “often” shrinks

P
(∞∑

k=0

αk is “bounded”
)

> 0 ?

P (non-convergence) > 0 if dist(x0,S∗) is “large”?

20/30

Key ingredients of the analysis

• Define the indicator function for “bad Dk”:

Yk = 1(cm (Dk,−gk) ≤ 0)

• Note the following inequality between step sizes (f is convex):

αk+1 ≤

{
γαk, if Yk = 0

θαk, if Yk = 1
= γ1−YkθYkαk

• Use the above inequality iteratively:

αk ≤ α0

k−1∏
ℓ=0

γ1−YℓθYℓ

• Get an upper bound of the series of step sizes:
∞∑
k=1

αk ≤ α0

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ =: α0S

• Analyze the behavior of the random series S

21/30

Key ingredients of the analysis

• Define the indicator function for “bad Dk”:

Yk = 1(cm (Dk,−gk) ≤ 0)

• Note the following inequality between step sizes (f is convex):

αk+1 ≤

{
γαk, if Yk = 0

θαk, if Yk = 1
= γ1−YkθYkαk

• Use the above inequality iteratively:

αk ≤ α0

k−1∏
ℓ=0

γ1−YℓθYℓ

• Get an upper bound of the series of step sizes:
∞∑
k=1

αk ≤ α0

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ =: α0S

• Analyze the behavior of the random series S

21/30

Key ingredients of the analysis

• Define the indicator function for “bad Dk”:

Yk = 1(cm (Dk,−gk) ≤ 0)

• Note the following inequality between step sizes (f is convex):

αk+1 ≤

{
γαk, if Yk = 0

θαk, if Yk = 1
= γ1−YkθYkαk

• Use the above inequality iteratively:

αk ≤ α0

k−1∏
ℓ=0

γ1−YℓθYℓ

• Get an upper bound of the series of step sizes:
∞∑
k=1

αk ≤ α0

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ =: α0S

• Analyze the behavior of the random series S

21/30

Key ingredients of the analysis

• Define the indicator function for “bad Dk”:

Yk = 1(cm (Dk,−gk) ≤ 0)

• Note the following inequality between step sizes (f is convex):

αk+1 ≤

{
γαk, if Yk = 0

θαk, if Yk = 1
= γ1−YkθYkαk

• Use the above inequality iteratively:

αk ≤ α0

k−1∏
ℓ=0

γ1−YℓθYℓ

• Get an upper bound of the series of step sizes:
∞∑
k=1

αk ≤ α0

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ =: α0S

• Analyze the behavior of the random series S

21/30

A closer look at the random series S

Recall that

S =

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ ,

where Yℓ = 1(cm (Dℓ,−gℓ) ≤ 0).

Two questions

• (Q1) Does there exist a constant ζ such that

P (S < ζ) > 0?

• (Q2) Moreover, can we specify the value of ζ?

22/30

A closer look at the random series S

Recall that

S =

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ ,

where Yℓ = 1(cm (Dℓ,−gℓ) ≤ 0).

Two questions

• (Q1) Does there exist a constant ζ such that

P (S < ζ) > 0?

• (Q2) Moreover, can we specify the value of ζ?

22/30

Answer to Q1 and Q2

Proposition
If {Dk} is q-probabilistically ascent with q > q0, where

q0 = 1− p0 =
log γ

log(θ−1γ)
,

then
1.

P (S < ∞) = 1,

2.
P (S < ζ) > 0 ⇐⇒ ζ >

θ

1− θ
.

Note

• P(S < ∞) = 1 already implies the existence of a ζ but not its value.

• The lower bound in 2 is tight, as S =
∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ ≥ θ

1− θ
.

23/30

Answer to Q1 and Q2

Proposition
If {Dk} is q-probabilistically ascent with q > q0, where

q0 = 1− p0 =
log γ

log(θ−1γ)
,

then
1.

P (S < ∞) = 1,

2.
P (S < ζ) > 0 ⇐⇒ ζ >

θ

1− θ
.

Note

• P(S < ∞) = 1 already implies the existence of a ζ but not its value.

• The lower bound in 2 is tight, as S =
∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ ≥ θ

1− θ
.

23/30

Non-convergence of PDS

Theorem
Under aforementioned assumptions on f , if the sequence {Dk} in PDS
is q-probabilistically ascent with q > q0, then

P
(
lim inf
k→∞

dist(xk,S∗) > 0

)
> 0,

provided that dist(x0,S∗) > α0/(1− θ).

24/30

What happens in the typical implementation of PDS?

Let Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1).

Recall that PDS is convergent if

m > log2

(
1− log θ

log γ

)
.

With our non-convergence analysis, PDS is non-convergent if

P (cm (Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) > q0,

which is equivalent to(
1

2

)m

> q0 =
log γ

log(θ−1γ)
,

or, equivalently,
m < log2

(
1− log θ

log γ

)
.

25/30

What happens in the typical implementation of PDS?

Let Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1).

Recall that PDS is convergent if

m > log2

(
1− log θ

log γ

)
.

With our non-convergence analysis, PDS is non-convergent if

P (cm (Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) > q0,

which is equivalent to(
1

2

)m

> q0 =
log γ

log(θ−1γ)
,

or, equivalently,
m < log2

(
1− log θ

log γ

)
.

25/30

What happens in the typical implementation of PDS?

Let Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1).

Recall that PDS is convergent if

m > log2

(
1− log θ

log γ

)
.

With our non-convergence analysis, PDS is non-convergent if

P (cm (Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) > q0,

which is equivalent to(
1

2

)m

> q0 =
log γ

log(θ−1γ)
,

or, equivalently,
m < log2

(
1− log θ

log γ

)
.

25/30

What happens in the typical implementation of PDS?

Let Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1).

Recall that PDS is convergent if

m > log2

(
1− log θ

log γ

)
.

With our non-convergence analysis, PDS is non-convergent if

P (cm (Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) > q0,

which is equivalent to(
1

2

)m

> q0 =
log γ

log(θ−1γ)
,

or, equivalently,
m < log2

(
1− log θ

log γ

)
.

25/30

Tightness of our assumption on {Dk}

Our assumption on {Dk}:

q-probabilistically ascent with q > q0.

Natural question:

Is it sufficient to require q ≥ q0?

Answer: NO!

Example
We assume

• θ = 1/2 and γ = 2, which implies q0 = 1/2;
• Dk = {gk/‖gk‖} or {−gk/‖gk‖} with probability 1/2, respectively.

Then PDS converges w.p.1.

26/30

Tightness of our assumption on {Dk}

Our assumption on {Dk}:

q-probabilistically ascent with q > q0.

Natural question:

Is it sufficient to require q ≥ q0?

Answer: NO!

Example
We assume

• θ = 1/2 and γ = 2, which implies q0 = 1/2;
• Dk = {gk/‖gk‖} or {−gk/‖gk‖} with probability 1/2, respectively.

Then PDS converges w.p.1.

26/30

Tightness of our assumption on {Dk}

Our assumption on {Dk}:

q-probabilistically ascent with q > q0.

Natural question:

Is it sufficient to require q ≥ q0?

Answer: NO!

Example
We assume

• θ = 1/2 and γ = 2, which implies q0 = 1/2;
• Dk = {gk/‖gk‖} or {−gk/‖gk‖} with probability 1/2, respectively.

Then PDS converges w.p.1.

26/30

Convergence results inspired by non-convergence analysis

Consider the series

S(κ) =

∞∑
k=1

k−1∏
ℓ=0

γ1−Yℓ(κ)θYℓ(κ),

where Yℓ(κ) = 1(cm (Dℓ,−gℓ) ≤ κ).

Roughly speaking, S(0) < ∞ implies non-convergence of PDS.

What can we say about convergence using S(κ)?

Theorem
If there exists a κ > 0 such that S(κ) = ∞, then DS converges.

Relation with existing result in [GRVZ 2015]

p0-probabilistically κ-descent =⇒ S(κ) = ∞ w.p.1

27/30

Convergence results inspired by non-convergence analysis

Consider the series

S(κ) =

∞∑
k=1

k−1∏
ℓ=0

γ1−Yℓ(κ)θYℓ(κ),

where Yℓ(κ) = 1(cm (Dℓ,−gℓ) ≤ κ).

Roughly speaking, S(0) < ∞ implies non-convergence of PDS.

What can we say about convergence using S(κ)?

Theorem
If there exists a κ > 0 such that S(κ) = ∞, then DS converges.

Relation with existing result in [GRVZ 2015]

p0-probabilistically κ-descent =⇒ S(κ) = ∞ w.p.1

27/30

Convergence results inspired by non-convergence analysis

Consider the series

S(κ) =

∞∑
k=1

k−1∏
ℓ=0

γ1−Yℓ(κ)θYℓ(κ),

where Yℓ(κ) = 1(cm (Dℓ,−gℓ) ≤ κ).

Roughly speaking, S(0) < ∞ implies non-convergence of PDS.

What can we say about convergence using S(κ)?

Theorem
If there exists a κ > 0 such that S(κ) = ∞, then DS converges.

Relation with existing result in [GRVZ 2015]

p0-probabilistically κ-descent =⇒ S(κ) = ∞ w.p.1

27/30

Convergence results inspired by non-convergence analysis

Consider the series

S(κ) =

∞∑
k=1

k−1∏
ℓ=0

γ1−Yℓ(κ)θYℓ(κ),

where Yℓ(κ) = 1(cm (Dℓ,−gℓ) ≤ κ).

Roughly speaking, S(0) < ∞ implies non-convergence of PDS.

What can we say about convergence using S(κ)?

Theorem
If there exists a κ > 0 such that S(κ) = ∞, then DS converges.

Relation with existing result in [GRVZ 2015]

p0-probabilistically κ-descent =⇒ S(κ) = ∞ w.p.1

27/30

Take away

In this talk, we

• theoretically explain the non-convergence phenomenon of PDS,
• find out the behavior of PDS is closely related to the random series

S =
∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ .

Non-convergence analysis can

• sharpen our knowledge about the algorithm,
• deepen our understanding about the convergence analysis,
• guide the selection of algorithmic parameters, and
• provide new perspectives on convergence analysis.

Thank you!
28/30

One more thing: OptiProfiler

github.com/optiprofiler

OptiProfiler (joint work with Cunxin Huang and Tom M. Ragonneau) is

a benchmarking platform for DFO solvers.

Our goal: fair, convenient, and uniform benchmarking.
• Creating performance profiles, data profiles, and log-ratio profiles
[Moré, Wild 2009; Shi, Xuan, Oztoprak, and Nocedal 2023]

• Providing multiple types of tests
noisy function, unrelaxable constraints, randomized initial point …

• Implemented in Python and MATLAB
• Default problem set: S2MPJ [Gratton, Toint 2024]

29/30

https://github.com/optiprofiler

One more thing: OptiProfiler

Example (MATLAB):

benchmark({@bds, @fminsearch}, "noisy")

Pro-les with the \noisy" feature

H
is
to
ry
-b
as
ed

p
ro
-
le
s

1 2 4 16 32 64

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
1
)

1 2 8 16 64 128

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
2
)

1 2 8 16 64 128

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
3
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
4
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
5
)

1 2 8 16 64 128

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
6
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
7
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
8
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
9
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
1
0
)

0 1 7 15 63 127

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
1
)

0 3 7 31 63 255

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
2
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
3
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
4
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
5
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
6
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
7
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
8
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
9
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
1
0
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
1
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
2
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
3
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
4
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
5
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
6
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
7
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
8
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
9
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
1
0
)

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

O
u
tp
u
t-
b
a
se
d
p
ro
-
le
s

1 2 4 8 16 32

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
1
)

1 2 4 8 16

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
2
)

1 2 4 8 16

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
3
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
4
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
5
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
6
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
7
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
8
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
9
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
1
0
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
1
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
2
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
3
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
4
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
5
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
6
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
7
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
8
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
9
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
1
0
)

fminsearch

BDS

Problem
-5

-4

-3

-2

-1

0

1

2

3

4

5

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
1
)

fminsearch

BDS

Problem

-4

-3

-2

-1

0

1

2

3

4

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
2
)

fminsearch

BDS

Problem

-4

-3

-2

-1

0

1

2

3

4

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
3
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
4
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
5
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
6
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
7
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
8
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
9
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
at
io

p
ro
-
le

(t
ol

=
10
!
1
0
)

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

N.B.: Separate profiles can also be generated.

30/30

One more thing: OptiProfiler

Example (MATLAB):

benchmark({@bds, @fminsearch}, "noisy")
Pro-les with the \noisy" feature

H
is
to
ry
-b
as
ed

p
ro
-
le
s

1 2 4 16 32 64

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
1
)

1 2 8 16 64 128

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
2
)

1 2 8 16 64 128

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
3
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
4
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
5
)

1 2 8 16 64 128

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
6
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
7
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
8
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
9
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

a
n
ce

p
ro
-
le
s
(t
ol

=
10
!
1
0
)

0 1 7 15 63 127

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
1
)

0 3 7 31 63 255

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
2
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
3
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
4
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
5
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
6
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
7
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
8
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
9
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
1
0
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
1
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
2
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
3
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
4
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
5
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
6
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
7
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
8
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
9
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
o
g-
ra
ti
o
p
ro
-
le

(t
ol

=
10
!
10
)

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

O
u
tp
u
t-
b
as
ed

p
ro
-
le
s

1 2 4 8 16 32

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
1
)

1 2 4 8 16

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
2
)

1 2 4 8 16

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
3
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
4
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
5
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
6
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
7
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
8
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
9
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
10
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
1
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
2
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
3
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
4
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
5
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
6
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
7
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
8
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
9
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
10
)

fminsearch

BDS

Problem
-5

-4

-3

-2

-1

0

1

2

3

4

5

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
1
)

fminsearch

BDS

Problem

-4

-3

-2

-1

0

1

2

3

4

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
2
)

fminsearch

BDS

Problem

-4

-3

-2

-1

0

1

2

3

4

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
3
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
4
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
5
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
6
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
7
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
8
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
9
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
1
0!

10
)

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

N.B.: Separate profiles can also be generated.
30/30

References I

▶ Chen, C. et al. (2016). “The direct extension of ADMM for multi-block
convex minimization problems is not necessarily convergent”. Math.
Program. 155, pp. 57–79.

▶ Conn, A. R., Scheinberg, K., and Vicente, L. N. (2009). Introduction to
Derivative-Free Optimization. Vol. 8. MOS-SIAM Ser. Optim. Philadelphia:
SIAM.

▶ Durrett, R. (2010). Probability: Theory and Examples. Fourth. Camb. Ser.
Stat. Probab. Math. Cambridge: Cambridge University Press.

▶ Fermi, E. and Metropolis, N. (1952). Numerical solution of a minimum
problem. Tech. rep. Alamos National Laboratory, Los Alamos, USA.

▶ Ghanbari, H. and Scheinberg, K. (2017). “Black-box optimization in
machine learning with trust region based derivative free algorithm”.
arXiv:1703.06925.

References II

▶ Gratton, S. et al. (2015). “Direct search based on probabilistic descent”.
SIAM J. Optim. 25, pp. 1515–1541.

▶ Kolda, T. G., Lewis, R. M., and Torczon, V. (2003). “Optimization by direct
search: New perspectives on some classical and modern methods”.
SIAM Rev. 45, pp. 385–482.

▶ Larson, J., Menickelly, M., and Wild, S. M. (2019). “Derivative-free
optimization methods”. Acta Numer. 28, pp. 287–404.

▶ Mascarenhas, W. (2014). “The divergence of the BFGS and Gauss Newton
methods”. Math. Program. 147, pp. 253–276.

▶ Powell, M. J. D. (1973). “On search directions for minimization
algorithms”. Math. Program. 4, pp. 193–201.

References III

▶ Yuan, Y. (1998). “An example of non-convergence of trust region
algorithms”. In: Advances in Nonlinear Programming. Ed. by Y. Yuan.
Dordrecht: Kluwer Academic Publishers, pp. 205–215.

	Tightness of analysis
	Appendix

