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Brief introduction to Probabilistic Direct Search

Derivative-Free
Optimization

Direct
Search

Randomized
Algorithms

The algorithm we consider in this talk:
Probabilistic Direct Search (PDS)
(Gratton, Royer, Vicente, and Zhang 2015)
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Apologies

• To everyone: Venice is so beautiful that I cannot help but get lost at
the last minute.

Solution: I will skip some slides to save time.
• To Clément: my bad title may give you a sense that your paper with
Zaikun is wrong.

Solution: my talk will show that your theorem is correct and tight.

• To Zaikun: recall his words in his talk “I always tell my students that
DFO is vivid because of its applications.”

Solution: I will show some computation works at the end.
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What is Derivative-Free Optimization and why

Derivative-Free Optimization (DFO)
• Do not use derivatives (first-order info.), only use function values
• Also called: zeroth-order/black-box/simulation-based optimization

Derivatives are often not available in applications

Nuclear Physics Machine Learning Circuit Design

Difficulties

• Problems are often noisy (naive finite difference?)
• Each function evaluation is expensive (e.g., PDE simulation)
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Direct-search methods and model-based methods

How to determine iterates?

• Direct-search methods: “simple” comparison of function values

• Model-based methods: build a surrogate of the objective function

Direct-search methods1 Model-based methods2

1Source: Kolda, Lewis, and Torczon 2003
2Source: Larson, Menickelly, and Wild 2019
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Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Direct Search based on sufficient decrease

Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)
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Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

x∗

x0
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A numerical example: CS v.s. PDS with 2 directions

Rosenbrock “banana” function:

f(x) =

n−1∑
i=1

[
(1− xi)

2 + 100(xi+1 − x2
i )

2
]

x
y

f

x

y
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A numerical example: CS v.s. PDS with 2 directions
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Function value v.s. number of function evaluations

Worst case complexity of function evaluations (GRVZ 2015)
O(n2ϵ−2) for CS while O(nϵ−2) for PDS
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Cosine measure

Definition (Cosine measure w.r.t. a vector)
Given a finite set D ⊆ Rn\{0} and a vector v ∈ Rn\{0}, define

cm(D, v) = max
d∈D

d⊤v

∥d∥∥v∥
,

which is the cosine measure of D with respect to v.

Example

cm(D, v) = cos θ
d1

d2

d3

d4

v
θ

cm(D, v) measures the ability of D to “approximate” v

9/30



Cosine measure

Definition (Cosine measure w.r.t. a vector)
Given a finite set D ⊆ Rn\{0} and a vector v ∈ Rn\{0}, define

cm(D, v) = max
d∈D

d⊤v

∥d∥∥v∥
,

which is the cosine measure of D with respect to v.

Example

cm(D, v) = cos θ
d1

d2

d3

d4

v
θ

cm(D, v) measures the ability of D to “approximate” v
9/30



Convergence theory

Definition (p-probabilistically κ-descent)
{Dk} is said to be p-probabilistically κ-descent, if

P (cm(Dk,−gk) ≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0,

where gk = ∇f(xk).

Intuition
Each Dk is “good enough” with probability at least p

no matter what has happened in the history

Theorem (GRVZ, 2015)
If {Dk} is p0-probabilistically κ-descent with κ > 0 and

p0 =
log θ

log(γ−1θ)
,

then PDS converges w.p.1 when f is L-smooth and lower-bounded.
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Practical choice and natural question

Corollary (GRVZ, 2015)

If Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1), then PDS converges w.p.1 if

m > log2

(
1− log θ

log γ

)
.

A natural question: what if

m ≤ log2

(
1− log θ

log γ

)
?

Moreover, are supermartingale-like assumptions essential?

P(some event | F) ≥ p

Related talks: Coralia, Kwassi Joseph, Matt, Anne, Warren, Sara, Lindon
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A simple test

• Objective function: f(x) = ∥x∥2/2
• Initial point: x0 = (−10, 0)T

• Stopping criterion: αk ≤ machine epsilon
• Number of experiments: 100, 000
• Parameters of PDS: α0 = 1, θ = 0.25, γ = 1.5, m = 2

m = 2 < 2.143 ≈ log2

(
1− log θ

log γ

)

12/30



A simple test (Cont’d)

Note: each black dot represents the output point of one run of PDS.
13/30



Non-convergence study is not rare

Many well-known algorithms have non-convergence examples

• Powell, On search directions for minimization algorithms, 1973.

• Yuan, An example of non-convergence of trust region algorithms, 1998.

• Reddi, Kale, and Kumar, On the convergence of Adam and beyond, 2018.

• Chen, He, Ye, and Yuan, The direct extension of ADMM for multi-block convex
minimization problems is not necessarily convergent, 2016.

• Dai, A perfect example for the BFGS method, 2013.

• Mascarenhas, The divergence of the BFGS and Gauss Newton methods, 2014.

Instead of finding a non-convergence example,
can we develop a theorem?
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An overview of our theory

We assume that f is smooth and convex (explained later).

We denote the optimal solution set of f by S∗.

We will establish the following.
Under some assumption on {Dk} and algorithmic parameters, there
exist choices of x0 such that

P
(
lim inf
k→∞

dist(xk,S∗) > 0

)
> 0.

Differences from a non-convergence example

one function v.s. some function class
special parameters v.s. conditions for parameters

a specific initial point v.s. a region for initial points

15/30



Assumption on {Dk}: probabilistic ascent

Recall p-probabilistically κ-descent

P (cm (Dk,−gk)≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0.

q-probabilistically ascent

P (cm (Dk,−gk)≤ 0 | D0, . . . ,Dk−1) ≥ q for each k ≥ 0.

Note
If cm (Dk,−gk) ≤ 0, then Dk is “bad” (no descent direction).
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Why assuming convexity?

cm (Dk,−gk) ≤ 0 No descent direction

f(xk + αkd) ≥ f(xk) ∀d ∈ Dkαk shrinks

f convex

• Convexity connects cm (Dk,−gk) ≤ 0 and shrinking of step size
• {Dk} is probabilistic ascent implies αk “often” shrinks
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From probabilistic ascent to non-convergence: How?

{Dk} is probabilistically ascent

αk “often” shrinks

P
( ∞∑

k=0

αk is “bounded”
)

> 0 ?

P (non-convergence) > 0 if dist(x0,S∗) is “large”?
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Key ingredients of the analysis

• Define the indicator function for “bad Dk”

Yk = 1(cm (Dk,−gk) ≤ 0)

• Note the following inequality between step sizes (f is convex)

αk+1 ≤

{
γαk, if Yk = 0

θαk, if Yk = 1
= γ1−YkθYkαk

• Use the above inequality iteratively

αk ≤ α0

k−1∏
ℓ=0

γ1−YℓθYℓ

• Get an upper bound of series of step sizes
∞∑
k=1

αk ≤ α0

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ =: α0S

• Analyze the behavior of the random series S
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A closer look at the random series S

Recall that

S =

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ ,

where Yℓ = 1(cm (Dℓ,−gℓ) ≤ 0).

Two questions

• (Q1) Does there exist a constant ζ such that

P (S < ζ) > 0?

• (Q2) Moreover, can we specify the value of ζ?

20/30



A closer look at the random series S

Recall that

S =

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ ,

where Yℓ = 1(cm (Dℓ,−gℓ) ≤ 0).

Two questions

• (Q1) Does there exist a constant ζ such that

P (S < ζ) > 0?

• (Q2) Moreover, can we specify the value of ζ?

20/30



Answer to Q1 and Q2

Proposition
If {Dk} is q-probabilistically ascent with q > q0, where

q0 = 1− p0 =
log γ

log(θ−1γ)
,

then
1.

P (S < ∞) = 1,

2.
P (S < ζ) > 0 ⇐⇒ ζ >

θ

1− θ
.

Note

• P(S < ∞) = 1 implies the existence of a ζ but not its value.

• The lower bound in 2 is tight, as S =
∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ ≥ θ

1− θ
.
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Non-convergence of PDS

Theorem
Under aforementioned assumptions on f , if the sequence {Dk} in PDS
is q-probabilistically ascent with q > q0, then

P
(
lim inf
k→∞

dist(xk,S∗) > 0

)
> 0,

provided that dist(x0,S∗) > α0/(1− θ).
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Weaker assumption than probabilistic ascent

Denote P(cm(Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) by Pk .

Recall that {Dk} is q-probabilistically ascent if Pk ≥ q for each k ≥ 0.

Note that {Pk} are random variables.

What we need is

not P(S < ∞) = 1 but P(S < ∞) > 0.

For the latter, we can relax the assumption

from Pk ≥ q > q0 to P
(
lim inf
k→∞

Pk > q0

)
> 0.
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What happens in the typical implementation of PDS?

Let Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1).

Recall that PDS is convergent if

m > log2

(
1− log θ

log γ

)
.

With our non-convergence analysis, PDS is non-convergent if

P (cm (Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) > q0,

which is equivalent to (
1

2

)m

>
log γ

log(θ−1γ)
,

or, equivalently,
m < log2

(
1− log θ

log γ

)
.

Assumptions for convergence and non-convergence are essential.
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Tightness of our assumption on {Dk}

Our assumption on {Dk}:

q-probabilistically ascent with q > q0.

Natural question:

Is it sufficient to require q ≥ q0?

Answer: NO!

Example
We assume

• θ = 1/2 and γ = 2, which implies q0 = 1/2;
• Dk = {gk/∥gk∥} or {−gk/∥gk∥} with probability 1/2, respectively.

Then PDS converges w.p.1.

25/30



Tightness of our assumption on {Dk}

Our assumption on {Dk}:

q-probabilistically ascent with q > q0.

Natural question:

Is it sufficient to require q ≥ q0?

Answer: NO!

Example
We assume

• θ = 1/2 and γ = 2, which implies q0 = 1/2;
• Dk = {gk/∥gk∥} or {−gk/∥gk∥} with probability 1/2, respectively.

Then PDS converges w.p.1.

25/30



Tightness of our assumption on {Dk}

Our assumption on {Dk}:

q-probabilistically ascent with q > q0.

Natural question:

Is it sufficient to require q ≥ q0?

Answer: NO!

Example
We assume

• θ = 1/2 and γ = 2, which implies q0 = 1/2;
• Dk = {gk/∥gk∥} or {−gk/∥gk∥} with probability 1/2, respectively.

Then PDS converges w.p.1.

25/30



Convergence result inspired by non-convergence analysis

Define a series

S(κ) =

∞∑
k=1

k−1∏
ℓ=0

γZℓ(κ)θ1−Zℓ(κ),

where Zℓ(κ) = 1(cm (Dℓ,−gℓ) ≥ κ).

Roughly speaking, P(S(0) < ∞) > 0 implies non-convergence of PDS.

Theorem
If there exists a κ > 0 such that S(κ) = ∞, then DS converges.

Relation with existing result (GRVZ, 2015)

p0-probabilistically κ-descent =⇒ S(κ) = ∞ w.p.1
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Take away

In this talk, we

• theoretically explain the non-convergence phenomenon of PDS,
• find out the behavior of PDS is closely related to the random series

S =

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ .

Non-convergence analysis can

• verify whether your assumption for convergence is essential,
• deepen our understanding of mathematical tools we use,
• provide new perspectives on convergence analysis,
• guide the choice of algorithmic parameters,
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One more thing: OptiProfiler

OptiProfiler (joint work with Tom M. Ragonneau and Zaikun Zhang) is

a benchmarking platform for DFO solvers.

Our goal: fair, convenient, and uniform benchmarking.

• Creating performance profiles, data profiles, and log-ratio profiles.
[Moré, Wild, 2009; Shi, Xuan, Oztoprak, and Nocedal, 2023]
Thanks for Nikolaus’s nice talk: runtime distributions and COCO!

• Providing multiple types of tests
noisy function, unrelaxable constraints, randomized initial point…

• Implemented in Python and MATLAB

28/30



One more thing: OptiProfiler

Just one line MATLAB code:

benchmark({@bds, @fminsearch}, "noisy")
Pro-les with the \noisy" feature
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