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Abstract

Direct-search methods are a major class in derivative-free optimization. The

combination of direct search and randomization techniques leads to an efficient

offspring, namely probabilistic direct search. Its convergence analysis has been thor-

oughly explored in recent years under the probabilistic descent assumption. However,

a natural question arises: how will this algorithm behave when the assumption

for convergence is not met? In this paper, we analyze the non-convergence of the

algorithm when polling directions are probabilistically ascent. Its analysis is basically

related to the discussion on a random series. We further show the tightness of our

non-convergence analysis in two perspectives. Our non-convergence theory completes

the analytical framework for the probabilistic direct search, guiding the selection of

the searching set in practice.

Keywords: Derivative-free optimization, Direct search, Probabilistic method, Non-

convergence analysis

1 Introduction

This paper focuses on the probabilistic direct search method for solving the unconstrained

optimization problem

min
x∈Rn

f(x), (1.1)
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where f : Rn → R is a differentiable function. Direct search is a derivative-free optimization

(DFO) method, which solves (1.1) without using derivatives and updates iterates based on

simple comparisons of function values at finite sample points [15].

In the deterministic case, direct search methods need to select a searching set consisting

of at least n+ 1 directions for each iteration, which limits its capability. To overcome this,

Gratton et al. [11] propose a framework of direct search based on probabilistic descent,

referred to as probabilistic direct search. They show that given shrinking factor θ and

expanding factor γ, the algorithm enjoys global convergence if the sequence of searching

sets is p0-probabilistically κ-descent with some positive κ and

p0 =
log θ

log(γ−1θ)
.

Specially, if we choose each searching set to be a collection of m independent random

directions following uniform distribution on the unit sphere, which is the typical choice in

practice [11], then a sufficient condition for convergence is

m > log2

(
1− log θ

log γ

)
.

This result not only provides more choices of searching sets for direct search, but also

guides the analysis of the probabilistic trust-region model [12].

A natural question arises: what will happen if m ≤ log2(1 − log θ/ log γ)? Further-

more, we would like to ask: is p0-probabilistically κ-descent assumption essential for the

convergence of probabilistic direct search? These two questions are both theoretically

interesting and practically meaningful. Theoretically, answering these questions will not

only verify whether p0-probabilistically κ-descent assumption is essential, but also help fill

gaps between the existing analysis and the behavior of the algorithm when the assumption

is not met. Practically, it provides more detailed guidance in parameter selection.

To answer these two questions, we establish the non-convergence theory of probabilistic

direct search. We prove that the algorithm will not converge if the searching set is

p-probabilistically ascent (Definition 3.1) with p > 1 − p0 and the objective function is

smooth and convex. In particular, for the above-mentioned typical case of searching sets,

the algorithm will not converge if m < log2(1− log θ/ log γ).

Moreover, on the one hand, we show that both our analysis and assumptions are tight

by investigating two special cases, respectively. On the other hand, the essential role of

the p0-probabilistically κ-descent assumption in the convergence analysis of probabilistic

direct search is further confirmed by our non-convergence analysis, where we answer the

question raised above that the algorithm will not converge if m < log2(1− log θ/ log γ).
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From a broader perspective, p0-probabilistically κ-descent assumption belongs to

submartingale-like assumptions, which are widely used in the convergence analysis of

randomized version (some called probabilistic models) of optimization methods such as

trust region [3, 28], line search [5, 7], and cubic regularization [7].

The remaining part of this paper is organized as follows. In Section 2, we provide

a concise review of DFO and introduce the necessary concepts of probabilistic direct

search. Section 3 establishes the non-convergence theory, forming main ideas of this paper.

Subsequently, in Section 4, we first show that the probabilistic direct search will not

converge if m < log2(1− log θ/ log γ) by our non-convergence analysis. Additionally, we

demonstrate the tightness of our non-convergence results by investigating two interesting

cases. We summarize our findings and draw conclusions in Section 5.

2 Preliminaries

To put our research in context, we briefly review the landscape of DFO. DFO is a field

that in recent decades arouses great interest in both academic research and practical

applications [2, 9, 16]. Within the existing body of literature, DFO methods are broadly

classified into two primary categories: direct-search methods and model-based methods.

Detailed discussion on direct-search methods can be found in [15], and notable examples

of direct search include the Nelder-Mead simplex method [18], the MADS methods [1, 17],

and BFO [19, 20]. Contrary to direct-search methods using simple comparisons of function

values, model-based methods construct local models through sampling under a trust-

region [8] or line-search [4] framework. A wealth of classical literature on model-based

methods can be referred to, such as [4, 8, 21, 22, 23, 24], with some well-known methods

and software in this category including PDFO [25]. Recently, randomization techniques

are introduced to both two categories and we refer to [3, 6, 7, 11, 12, 13].

In what follows, we review the framework of probabilistic direct search and introduce

the necessary notations. Section 2.1 introduces the fundamental framework of direct

search based on sufficient decrease, whereas Section 2.2 concentrates on the randomization

techniques inherent in this framework along with the convergence theory.
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2.1 Direct search based on sufficient decrease

To solve problem (1.1), we consider the following framework of direct search based on

sufficient decrease.

Algorithm 2.1 Direct search based on sufficient decrease

Select x0 ∈ Rn, α0 > 0, θ ∈ (0, 1), γ ∈ [1,∞), and a forcing function ρ : (0,∞) → (0,∞).

For k = 0, 1, 2, . . . , do the following.

1. Generate a set of nonzero vectors Dk ⊂ Rn deterministically or stochastically.

2. Check whether there exists a d ∈ Dk such that

f(xk)− f(xk + αkd) > ρ(αk). (2.1)

3. If d exists, set xk+1 = xk + αkd, αk+1 = γαk; otherwise, set xk+1 = xk, αk+1 = θαk.

In Algorithm 2.1, inequality (2.1) is called the sufficient decrease condition, where

we require that the forcing function ρ should be continuous, positive, nondecreasing,

and satisfy ρ(α) = o(α) when α → 0+. The typical choice of the forcing function

is ρ(α) = cα2, where c is a positive constant. For simplicity, we declare the iteration

existing a d satisfying (2.1) as a successful iteration; otherwise, an unsuccessful iteration.

There are two points worth noting in Algorithm 2.1. Firstly, in the third step, we have not

decided inside a successful iteration which direction d to move along if there are multiple

choices. Roughly speaking, there are two typical strategies. One is to choose the direction

that decreases the function value the most, which is called complete polling. The other is to

choose the first direction that satisfies (2.1), which is called opportunistic polling. Secondly,

we can set an upper bound αmax ∈ (0,∞] for step sizes and let αk+1 = min{γαk, αmax} for

successful iterations.

We introduce the definition of cosine measure, which is a key concept in the later

convergence analysis.

Definition 2.1 (Cosine measure). Let D be a finite set of nonzero vectors in Rn. The

cosine measure of the set D given a nonzero vector v, denoted by cm(D, v), is defined as

cm(D, v) = max
d∈D

dTv

∥d∥∥v∥
.

In addition, the cosine measure of the set D, denoted by cm(D), is defined as

cm(D) = min
v∈Rn\{0}

cm(D, v).
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Remark 2.1. To avoid an ill-posed definition, from here and onwards, we assume by

convention that cm (D, v) = 1 when v = 0, which is the same as in [11].

If we assume there exists a κ > 0 such that cm(Dk) ≥ κ for each k ≥ 0, then we can

guarantee the convergence of Algorithm 2.1 under some technical assumptions [15], where

the convergence means lim infk ∥∇f(xk)∥ = 0.

2.2 Probabilistic direct search and its convergence

Let us first introduce the basic definitions and notations from probability theory that will

be used throughout this paper.

We consider the probability space (Ω,F ,P) and denote the corresponding random

variable of Dk in Algorithm 2.1 by Dk. Then we use {Dk} to define a filtration F = {Fk} in

our probability space, where Fk = σ(D0, . . . ,Dk). Here σ(D0, . . . ,Dk) represents the σ-

algebra generated by random variables D0, . . . ,Dk. Note that we define F−1 to be the

trivial σ-algebra {∅,Ω} which is also applied to the other filtration discussed through-

out this paper for consistence of notations. Also, we denote the corresponding random

variables of xk, αk, ∇f(xk), d by Xk, Ak, Gk, d respectively. Since all randomness come

from {Dk}, we find that Xk, Ak, and Gk are all measurable to Fk−1 for all k ≥ 0.

(In probability theory, {Xk}, {Ak}, and {Gk} are called predictable processes with re-

spect to the filtration F.) We also denote the conditional expectation of a random

variable W given a σ-algebra G by E(W | G) (see [10, Section 5.1] for more detailed

definition). Then we define the conditional probability of an event A ∈ G given a σ-

algebra G by P (A | G) = E (1(A) | G), where 1(A) is the indicator function of the event A.

Instead of being required that {cm(Dk)} shares a uniform positive lower bound,

probabilistic direct search only needs to satisfy p0-probabilistically κ-descent with the help

of following definition.

Definition 2.2 ([11, Definition 3.1]). Consider Algorithm 2.1 with f being differentiable.

The sequence {Dk} is said to be p-probabilistically κ-descent if it satisfies

P (cm (Dk,−Gk) ≥ κ | Fk−1) ≥ p for each k ≥ 0.

Remark 2.2. The inequality in Definition 2.2 should be understood in the almost sure

sense, that is, for each k ≥ 0,

P (P (cm (Dk,−Gk) ≥ κ | Fk−1) ≥ p) = 1.

This is because the conditional probability P(· | Fk−1) is a random variable, which is

only defined up to almost sure equivalence. Henceforth, all the inequalities should be
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understood in this way if they involve conditional probabilities or expectations with respect

to a σ-algebra, and we will not repeat this point.

In literature, we often assume the sequence {Dk} shares uniform and positive lower and

upper bounds on the length. Without loss of generality, we make a blanket assumption

that each element of Dk is a unit vector as follows.

Blanket Assumption. Any realization of Dk is a finite collection of unit vectors in Rn.

Using Definition 2.2, the convergence of probabilistic direct search is established as

follows.

Theorem 2.1 ([11, Theorem 3.4]). Consider Algorithm 2.1 with f being differentiable and

lower bounded, and ∇f being Lipschitz continuous. If {Dk} is p0-probabilistically κ-descent

with p0 = log θ/ log(γ−1θ) as κ being a positive constant, then

P
(
lim inf
k→∞

∥Gk∥ = 0
)

= 1. (2.2)

In practice, Dk is typically chosen to be m independent random vectors, uniformly

distributed on the unit sphere in Rn. The following corollary, derived from Theorem 2.1,

provides guidance on selecting m to ensure convergence of the probabilistic direct search.

Corollary 2.1 ([11, Corollary B.4]). Consider Algorithm 2.1 with f satisfying the as-

sumptions in Theorem 2.1. Let Dk = {d1, . . . , dm}, where {dℓ}mℓ=1 are independent random

vectors uniformly distributed on the unit sphere in Rn. Then {Gk} achieves (2.2) if

m > log2

(
1− log θ

log γ

)
.

3 Failure of global convergence

A natural question arises concerning the behavior of Algorithm 2.1 when {Dk} fails to

satisfy the p-probabilistically κ-descent property (Definition 2.2). More specifically, we are

interested in the case that in Corollary 2.1

m ≤ log2

(
1− log θ

log γ

)
.

Thus, we give a simple test as follows. We choose the objective function f(x) = xTx/2

with x ∈ R2. We set the initial point x0 = (−10, 0)T, the initial step size α0 = 1, the shrink-

ing factor θ = 1/4, the expanding factor γ = 3/2, and the forcing function ρ(α) = α2/103.
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We then generate m = 2 searching directions independently and uniformly distributed

on the unit sphere in R2 in each iteration so that m < log2(1 − log θ/ log γ). We run

Algorithm 2.1 for 5000 times, in each of which we stop the algorithm if the step size is less

than or equal to the machine epsilon (≈ 2.22× 10−16). The results are shown in Figure 1,

where the blue circle represents the initial point, the red pentagram represents the global

minimizer, and each black dot represents the output of the algorithm for each run. We

Figure 1: An illustrative example of failure of global convergence

observe that many runs of the algorithm fail to converge to the global minimizer, which

motivates us to investigate the non-convergence behavior of Algorithm 2.1. In the remain-

der of this section, we will propose specific assumptions under which non-convergence will

occur. First we introduce a new concept, denoted as “p-probabilistically ascent” as follows.

Definition 3.1 (p-probabilistically ascent). Consider Algorithm 2.1 with f being differen-

tiable. The sequence {Dk} is said to be p-probabilistically ascent if it satisfies

P (cm (Dk,−Gk) ≤ 0 | Fk−1) ≥ p1(Gk ̸= 0) for each k ≥ 0. (3.1)

Remark 3.1. It may be appealing to define p-probabilistically ascent as

P (cm (Dk,−Gk) ≤ 0 | Fk−1) ≥ p (3.2)

for each k ≥ 0. However, if we remove the indicator function 1(Gk ̸= 0), then the definition

will enforce the algorithm never to find any stationary point almost surely since by our

convention that cm (D, 0) = 1, the left-hand side of the inequality (3.2) will collapse to 0

for any ω ∈ Ω such that Gk(ω) = 0. With the help of the indicator function, we can
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ensure that the inequality of the conditional probability is consistent when Gk = 0. We

also see that {Gk ̸= 0} ∈ Fk−1 so that the inequality (3.1) makes sense and Definition 3.1

is well-defined.

We then define the indicator function

Yk = 1({cm (Dk,−Gk) ≤ 0} ∪ {Gk = 0}). (3.3)

We observe that if f is convex and smooth, then

Ak+1 ≤

θAk, if Yk = 1

γAk, otherwise
= γ1−YkθYkAk (3.4)

since {Yk = 1} implies no descent directions in Dk. Moreover, we have the following lemma

showing that {Yk} satisfies submartingale-like property.

Lemma 3.1. Consider Algorithm 2.1 with f being differentiable and define Yk as (3.3).

If {Dk} is p-probabilistically ascent, then we have

P
(
Yk = 1 | FY

k−1

)
≥ p,

where FY
k−1 = σ(Y0, . . . , Yk−1).

Proof. Using the definition of Yk, we have

P (Yk = 1 | Fk−1) = P ({cm (Dk,−Gk) ≤ 0} ∪ {Gk = 0} | Fk−1)

= P (cm (Dk,−Gk) ≤ 0 | Fk−1) + P (Gk = 0 | Fk−1)

≥ p1(Gk ̸= 0) + 1(Gk = 0) ≥ p,

where the second equality is due to the fact that {cm (Dk,−Gk) ≤ 0} and {Gk = 0} are

disjoint events, and the last inequality is because {Gk = 0} ∈ Fk−1 so that

P (Gk = 0 | Fk−1) = E (1(Gk = 0) | Fk−1) = 1(Gk = 0).

Recalling Fk = σ(D0, . . . ,Dk), we have Yk ∈ Fk so that FY
k−1 ⊆ Fk−1, which implies the

desired inequality.

In the following, we will first use the definition of p-probabilistically ascent to establish

the non-convergence of probabilistic direct search by Markov’s inequality in Section 3.1

and Chernoff bound in Section 3.2, respectively. A weaker assumption will be proposed in

Section 3.3 to broaden non-convergence analysis.
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3.1 Non-convergence analysis by Markov’s inequality

In this section, we use Markov’s inequality to conduct the non-convergence analysis. The

main idea of the following theorem is that under suitable assumptions, the expectation of

the series of step sizes is finite.

Theorem 3.1. Consider Algorithm 2.1 with f being convex, differentiable, and having an

optimal solution set S. If {Dk} is p-probabilistically ascent with p > (γ − 1)/(γ − θ), then

we have

P
(
lim inf
k→∞

dist(Xk,S) = 0
)

< 1

provided dist(x0,S) > α0/(1− γ + p(γ − θ)).

Proof. Denote α0/(1− γ + p(γ − θ)) by q. Then it is sufficient to prove

P

(
∞∑
k=0

Ak ≥ dist(x0,S)

)
≤ q

dist(x0,S)

since P(lim infk dist(Xk,S) = 0) ≤ P(
∑∞

k=0 Ak ≥ dist(x0,S)). Using Markov’s inequality,

it suffices to prove

E

(
∞∑
k=0

Ak

)
≤ q.

Since Ak is positive for each k, it is equivalent to prove
∑∞

k=0 E(Ak) ≤ q by Tonelli’s

theorem [26, Tonelli’s Theorem, Page 420]. After defining Yk as (3.3) and using (3.4), we

establish the inequality for expectations of step sizes by

E(Ak+1) = E (E (Ak+1 | Fk−1))

≤ E
(
AkE

(
γ1−YkθYk | Fk−1

))
≤ (γ(1− p) + θp)E (Ak) ,

(3.5)

where the first equality is due to the tower property of expectations, and the last inequality

is due to the assumption of {Dk}. Iteratively using (3.5), we have E(Ak) ≤ (γ(1−p)+θp)kα0

for each k ≥ 0. Since γ(1− p) + θp > 0, we conclude our proof.

3.2 Non-convergence analysis by Chernoff bound

In the preceding section, the requirement that p > (γ − 1)/(γ − θ) appeared overly rigid.

Hence, in this section, we aim to weaken it to p > p∗ with

p∗ = 1− p0 =
log γ

log(θ−1γ)
, (3.6)
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where p0 is defined in the convergence theorem (Theorem 2.1).

We observe that inequality (3.4) provides us a natural upper bound for each Ak:

Ak ≤ α0

k−1∏
ℓ=0

γ1−YℓθYℓ . (3.7)

It will turn out that the 0-1 process {Yk} plays an essential role, and we will an-

alyze it in the following. Hence, given any 0-1 process {Yk}, we define the filtra-

tion FY = {FY
k }, where FY

k = σ(Y0, . . . , Yk). We define another two stochastic pro-

cesses {Uk}k≥1 and {Y k}k≥1 as follows.

Uk = Uk(Y0, . . . , Yk−1) =
k−1∏
ℓ=0

γ1−YℓθYℓ for each k ≥ 1, (3.8)

and

Y k = Y k(Y0, . . . , Yk−1) =
1

k

k−1∑
ℓ=0

Yℓ for each k ≥ 1. (3.9)

For clarity and convenience of notations, we will keep these notations till the end of this

paper. Recalling Lemma 3.1, we have {Yk} satisfies the submartingale-like property

P
(
Yk = 1 | FY

k−1

)
≥ p for each k ≥ 0 (3.10)

if {Dk} is p-probabilistically ascent. Following lemmas will be devoted to the analysis of

the behavior of {Uk}k≥1 and {Y k}k≥1 when inequality (3.10) holds. Before this, Lemma 3.2

will show that the inequality concerning the conditional probability with respect to a σ-

algebra will be preserved when translated to the conditional probability with respect to a

nonzero measure event.

Lemma 3.2. Let {Yk} be a 0-1 process satisfying

P
(
Yk = 1 | FY

k−1

)
≥ p for each k ≥ 0.

Then for each k ≥ 0, we have

P (Yk = 1 | E) ≥ p for all E ∈ FY
k−1 such that P(E) > 0.

Lemma 3.3 establishes an upper bound for the conditional probability of the random

variable Y k being smaller than some given real number via the Chernoff bound. This

forms a pivotal step towards demonstrating non-convergence.
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Lemma 3.3. Let {Yk} be a 0-1 process satisfying

P
(
Yk = 1 | FY

k−1

)
≥ p for each k ≥ 0.

Then for any q < p, we have

P
(
Y k ≤ q | Ek0

)
≤ exp

[
−(q − p)2

2p
(k + k0)

]
for all k ≥ 0 and k0 ≥ 0, (3.11)

where Ek0 =
⋂k0−1

ℓ=0 {Yℓ = 1}.

Proof. We only consider the nontrivial case where k > k0 ≥ 1 in inequality (3.11). By

the definition of Y k and Markov’s inequality,

P
(
Y k ≤ q | Ek0

)
= P

(
exp

(
−t

k−1∑
ℓ=0

Yℓ

)
≥ e−tkq

∣∣∣∣ Ek0

)

≤ etkq E

(
k−1∏
ℓ=0

e−tYℓ

∣∣∣∣ Ek0

)

= etkq−tk0 E

(
k−1∏
ℓ=k0

e−tYℓ

∣∣∣∣ Ek0

)
,

(3.12)

where t is an arbitrary positive number. Then we pay attention to E(
∏k−1

ℓ=k0
e−tYℓ | Ek0).

We use the tower property of expectations and get

E

(
k−1∏
ℓ=k0

e−tYℓ

∣∣∣∣ FY
k0−1

)
= E

(
E
(
e−tYk−1 | FY

k−2

) k−2∏
ℓ=k0

e−tYℓ

∣∣∣∣ FY
k0−1

)
, (3.13)

where we set
∏k−2

ℓ=k0
e−tYℓ = 1 when k = k0 + 1 by convention. By the assumption on the

conditional probability of {Yk}, we have

E
(
e−tYk−1 | FY

k−2

)
≤ pe−t + 1− p ≤ exp(pe−t − p), (3.14)

where the last inequality is due to x + 1 ≤ ex for all x. By equality (3.13) and inequal-

ity (3.14), we have

E

(
k−1∏
ℓ=k0

etYℓ

∣∣∣∣ FY
k0−1

)
≤ exp(p(et − 1))E

(
k−2∏
ℓ=k0

etYℓ

∣∣∣∣ FY
k0−1

)
≤ exp[p(k − k0)(e

t − 1)].

Observing that P(Ek0) ≥ pk0 > 0, we have

E

(
k−1∏
ℓ=k0

etYℓ

∣∣∣∣ Ek0

)
≤ exp[p(k − k0)(e

−t − 1)]
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by Lemma 3.2. Hence, we can further rewrite inequality (3.12) as

P
(
Y k ≤ q | Ek0

)
≤ exp[p(k − k0)(e

−t − 1) + tkq − tk0]. (3.15)

Since inequality (3.15) holds for all t > 0, we select t = log(p/q). Then we have

p(k − k0)(e
−t − 1) + tkq − tk0 = −(

k

2ξ
+

k0
2ξ2

)(q − p)2 + (
k0
p

− k0)(q − p) (q < ξ < p),

where the equality comes from Taylor expansion of the function

f(q) = (k − k0)(q − p) + (k0 − kq) log(
q

p
)

at the point p. Therefore, one can show that

p(k − k0)(e
−t − 1) + tkq ≤ −(q − p)2

2p
(k + k0),

and conclude from inequality (3.15) that

P
(
Y k ≤ q | Ek0

)
≤ exp

[
−(q − p)2

2p
(k + k0)

]
.

Lemma 3.3 allows us to establish the following lemma, revealing the behavior of the

series of {Uk}k≥1 when {Yk} fulfills inequality (3.10) with p > p∗.

Lemma 3.4. Let {Yk} be a 0-1 process satisfying

P
(
Yk = 1 | FY

k−1

)
≥ p for each k ≥ 0,

where p > p∗. Then we have

P

(
∞∑
k=1

Uk < ζ

)
> 0 ⇐⇒ ζ >

θ

1− θ
.

Proof. The proof from left to right is shown by Uk ≥ θk. We focus on the proof from

right to left. Let us fix one ζ > θ/(1− θ). For each k0 ≥ 1, we have

P

(
∞∑
k=1

Uk < ζ

)
≥ P

({
∞∑
k=1

Uk < ζ

}⋂
Ek0

)
,

where Ek0 is defined in Lemma 3.3. After observing Ek0 is not a null set for each k0 ≥ 1,

it suffices to prove that there exists a k0 ≥ 1 such that

P

(
∞∑
k=1

Uk < ζ

∣∣∣∣ Ek0

)
> 0.
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We observe that

P

(
∞∑
k=1

Uk < ζ

∣∣∣∣ Ek0

)
≥ P

(
∞∑

k=k0+1

Uk < ζ − θ

1− θ

∣∣∣∣ Ek0

)
, (3.16)

then we only need to prove the right hand side of inequality (3.16) is positive. For

any q > p∗, we have γ
1−qθq < 1, which leads to the convergence of the series

∑∞
k=k0

(γ1−qθq)
k
.

Then, for any q > p∗, there always exists an N such that, for any k0 ≥ N ,

∞∑
k=k0+1

(
γ1−qθq

)k ≤ ζ − θ

1− θ
. (3.17)

Then we can conclude from equality (3.16) and inequality (3.17) that it suffices to prove

there exists a q > p∗ such that the following inequality holds for all sufficient large k0

P

(
∞∑

k=k0+1

Uk <
∞∑

k=k0+1

(
γ1−qθq

)k ∣∣∣∣ Ek0

)
> 0.

From the definitions of Uk and Y k, we can have

P

(
∞∑

k=k0+1

Uk <
∞∑

k=k0+1

(
γ1−qθq

)k ∣∣∣∣ Ek0

)
≥ P

(
∞⋂

k=k0+1

{
Uk <

(
γ1−qθq

)k} ∣∣∣∣ Ek0

)

= P

(
∞⋂

k=k0+1

{
Y k > q

} ∣∣∣∣ Ek0

)

≥ 1−
∞∑

k=k0+1

P(Y k ≤ q | Ek0),

(3.18)

where the last inequality is due to the subadditivity of probability. According to Lemma 3.3

and inequality (3.18), it suffices to prove there exists a q ∈ (p∗, p) such that for all sufficient

large k0 the following inequality holds

∞∑
k=k0+1

exp

[
−(q − p)2

2p
(k + k0)

]
< 1,

which is true by the convergence of the series.

Lemma 3.4 provides a qualitative result that the probability is nonzero provided

that ζ > θ/(1− θ). Actually, based on the same framework of the proof of Lemma 3.4, we

can obtain lower bounds of the probability with more careful analysis, which are shown

in the following proposition, whose proof is provided in Appendix A for readers who are

interested in the details.
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Proposition 3.1. Let {Yk} be a 0-1 process satisfying

P
(
Yk = 1 | FY

k−1

)
≥ p for each k ≥ 0,

where p > p∗. Then we have

P

(
∞∑
k=1

Uk < t

)
≥
(
t− θ

1− θ

)C1

for all t ∈ (θ/(1− θ), C2), (3.19)

and

P

(
∞∑
k=1

Uk < t

)
≥ 1− t−C3 for all t ∈ (C4,∞), (3.20)

where C1, C2, C3, and C4 are positive constants depending on p, θ, and γ.

Building on Lemma 3.4, we establish the following non-convergence theorem for

probabilistic direct search based on the assumption that {Dk} is p-probabilistically ascent

with p > p∗.

Theorem 3.2. Consider Algorithm 2.1 with f being convex, differentiable, and having an

optimal solution set S. If {Dk} is p-probabilistically ascent with p > p∗, then we have

P
(
lim inf
k→∞

dist(Xk,S) = 0
)

< 1,

provided dist(x0,S) > α0/(1− θ).

Proof. Define Yk as (3.3). Then we can use inequality (3.7) and establish

∞∑
k=1

Ak ≤ α0

∞∑
k=1

Uk.

By the assumption of {Dk}, we find that {Yk} satisfies the conditions in Corollary 3.4.

Let ζ = dist(x0,S)/α0 − 1. Since dist(x0,S) > α0/(1− θ), we have

P
(
lim inf
k→∞

dist(Xk,S) = 0
)

≤ P

(
∞∑
k=0

Ak ≥ dist(x0,S)

)

≤ P

(
∞∑
k=1

Uk ≥ ζ

)
< 1,

(3.21)

where the last inequality is due to Corollary 3.4.

If we assume ∇f or f is Lipschitz continuous respectively, using the same argument as

in the proof of Theorem 3.2, we have the following corollaries of non-convergence provided

that the norm of the initial gradient or function value is large enough.

14



Corollary 3.1. Consider Algorithm 2.1 with f being convex, differentiable, and ∇f

being L-Lipschitz continuous. If {Dk} is p-probabilistically ascent with p > p∗, then we

have

P
(
lim inf
k→∞

∥Gk∥ = 0
)

< 1,

provided ∥g0∥ > α0L/(1− θ).

Corollary 3.2. Consider Algorithm 2.1 with f being convex, differentiable, and L-Lipschitz

continuous. If {Dk} is p-probabilistically ascent with p > p∗, then we have

P
(
lim
k→∞

f(Xk) = inf
x∈R

f(x)

)
< 1,

provided f(x0) > α0L/(1− θ) + infx∈R f(x).

Proofs of both corollaries are almost the same with that in Theorem 3.2. It is noted

that the result in Corollary 3.2 is about lim instead of lim inf since Algorithm 2.1 is

monotone about {f(Xk)}.

3.3 Non-convergence under a weaker assumption

In this section, we will introduce a weaker assumption than the p-probabilistically ascent

assumption with p > p∗. This less stringent assumption offers a broader perspective on

the circumstances under which the algorithm may fail to converge.

The fundamental concept here is to explore the condition under which the series
∑

k Uk con-

verges with probability 1. To accomplish this, we need to prove Lemma 3.6 first, whose

proof relies on the Azuma-Hoeffding inequality, content of which is shown as follows.

Lemma 3.5 (Azuma-Hoeffding Inequality [27, Theorem 2.2.6]). Suppose {Wk} is a

martingale, and

|Wk −Wk−1| ≤ ck a.s. for each k ≥ 1.

Then for each k ≥ 1 and all ε > 0,

P (|Wk −W0| ≥ ε) ≤ 2 exp

(
−ε2

2
∑k

ℓ=1 c
2
ℓ

)
.

With the help of Lemma 3.5, we present as follows Lemma 3.6, which can be regarded

as a non-i.i.d. version of the Law of Large Numbers.
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Lemma 3.6. Suppose {Wk} is a uniformly bounded stochastic process. Then we have

P

(
lim
k→∞

1

k

k−1∑
ℓ=0

(Wℓ − Vℓ) = 0

)
= 1,

where Vℓ = E
(
Wℓ | FW

ℓ−1

)
with FW

ℓ−1 = σ(W0, . . . ,Wℓ−1) for each ℓ ≥ 0.

Proof. Define Hk = Wk − Vk and Sk =
∑k−1

ℓ=0 Hℓ for each k ≥ 0, where we let S0 = 0.

Then we find that {Sk} is a martingale. Further, since {Wk} is uniformly bounded, there

exists a constant c such that

|Sk − Sk−1| ≤ c a.s. for each k ≥ 1.

Then by Azuma-Hoeffding Inequality (Lemma 3.5), we have, for each k ≥ 0 and each n ≥ 1,

P (|Sk| > k/n) ≤ 2 exp

(
− k

2c2(n+ 1)2

)
,

which implies that
∑∞

k=0 P (|Sk| > k/n) < ∞. Then by Borel-Cantelli Lemma, we have,

for each n ≥ 1,

P
(
lim sup
k→∞

{∣∣∣∣Sk

k

∣∣∣∣ > 1

n

})
= 0.

Noticing that

lim sup
k→∞

{∣∣∣∣Sk

k

∣∣∣∣ > 1

n

}
=

{
lim sup
k→∞

∣∣∣∣Sk

k

∣∣∣∣ > 1

n

}
, (3.22)

we have P(limk Sk/k = 0) = 1 by letting n → ∞.

Remark 3.2. We simply proof the equality (3.22). For a given sequence of functions {fk}
and a real number y, we need to show that

lim sup
k→∞

{fk > y} =

{
lim sup
k→∞

fk > y

}
. (3.23)

By the equivalent definition of lim sup of a set sequence, we have the left-hand side of the

equality (3.23) is equivalent to

{x : there exists a subsequence k(i) such that fk(i)(x) > y},

which is equivalent to the right-hand side of the equality (3.23).

The next lemma answers the question of when the series
∑

k Uk converges with proba-

bility 1 by proposing a lim inf-type assumption on {Yk}.
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Lemma 3.7. Let {Yk} be a 0-1 process satisfying

P
(
lim inf
k→∞

P
(
Yk = 1 | FY

k−1

)
> p∗

)
> 0. (3.24)

Then we have

P

(
∞∑
k=1

Uk < ∞

)
> 0.

Proof. Recall the definitions of Uk in (3.8) and Y k in (3.9). Then by the root test of

series, it suffices to prove that

P
(
lim inf
k→∞

Y k > p∗

)
> 0.

Let us define Pk = P
(
Yk = 1 | FY

k−1

)
. By Lemma 3.6, we have

lim
k→∞

(Y k −
1

k

k−1∑
ℓ=0

Pℓ) = 0 a.s.

Then, by computation rules of lim inf, we have

lim inf
k→∞

Y k = lim inf
k→∞

1

k

k−1∑
ℓ=0

Pℓ a.s.

Thus, we only need to prove that

P

(
lim inf
k→∞

1

k

k−1∑
ℓ=0

Pℓ > p∗

)
> 0.

Recalling our assumption of {Yk} that P (lim infk Pk > p∗) > 0, we conclude our proof by

noticing

lim inf
k→∞

1

k

k−1∑
ℓ=0

Pℓ ≥ lim inf
k→∞

Pk.

Similar to how we demonstrated Theorem 3.2, we also establish the corresponding

non-convergence theorem for probabilistic direct search using Lemma 3.7.

Theorem 3.3. Consider Algorithm 2.1 with f being convex, differentiable, and having an

optimal solution set S. If {Dk} satisfies

P
(
lim inf
k→∞

P ({cm (Dk,−Gk) ≤ 0} ∪ {Gk = 0} | Fk−1) > p∗

)
> 0, (3.25)

then there exists a constant ζ such that

P
(
lim inf
k→∞

dist(Xk,S) = 0
)

< 1

provided dist(x0,S) > ζ.
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Proof. We can duplicate the proof of Theorem 3.2 until finding a constant to establish

inequality (3.21). After defining Yk as (3.3), we have the series
∑∞

k=1 Uk is finite with

nonzero probability by Lemma 3.7. By the subadditivity of probability, there exists a

constant ζ0 such that

P

(
∞∑
k=1

Uk ≤ ζ0

)
> 0.

Thus, we conclude that, for any objective function which is convex and has an optimal

solution set S, if dist(x0,S) > ζ = α0(1 + ζ0), then

P
(
lim inf
k→∞

dist(Xk,S) = 0
)

≤ P

(
∞∑
k=1

Uk > ζ0

)
< 1.

Remark 3.3. It is not hard to find that, {Dk} that is p-probabilistically ascent prop-

erty with p > p∗ will automatically satisfy the inequality (3.25), meaning that (3.25)

provides a weaker assumption. More specifically, recalling that the conditional probability

Pk = P({cm(Dk,−Gk) ≤ 0} ∪ {Gk = 0} | Fk−1) is a random variable, we find that

p-probabilistically ascent with p > p∗ requires all Pk to be larger than p∗ almost surely for

each k ≥ 1, while (3.25) only requires the lim inf of Pk to be larger than p∗ with positive

probability.

4 Tightness of the non-convergence results

In this section, we mainly focus on demonstrating that our non-convergence analysis for

probabilistic direct search is tight. First, we show that our analysis nearly encompasses

the counterpart of Corollary 2.1 except one particular case. We then explain the reason

behind the diminished effectiveness of our analysis at this particular case. Furthermore,

we provide an example that probabilistic direct search does converge in this case.

Recall what has been established in Corollary 2.1, which states that Algorithm 2.1 will

converge with probability 1 if

m > log2

(
1− log θ

log γ

)
.

Then the following corollary shows the non-convergence side.

Corollary 4.1. Let Dk = {d1, . . . , dm}, where {dℓ}mℓ=1 are i.i.d. random vectors uniformly

distributed on the unit sphere in Rn. If

m < log2

(
1− log θ

log γ

)
,

18



then for any convex and differentiable function that has an optimal solution set S satisfy-

ing dist(x0,S) > α0/(1− θ), we have

P
(
lim inf
k→∞

dist(Xk,S) = 0
)

< 1.

Proof. By Theorem 3.2, we only need to prove that {Dk} is p-probabilistically ascent

with p > p∗. From the construction of {Dk}, we have

P (cm(Dk,−Gk) ≤ 0 | Fk−1) = P (cm(Dk,−Gk) ≤ 0)1(Gk ̸= 0)

=
[
P
(
dTℓ Gk ≥ 0

)]m
1(Gk ̸= 0) = 2−m

1(Gk ̸= 0),

which means that {Dk} is 2−m-probabilistically ascent. Recalling the definition of p∗, it is

not hard to see that 2−m > p∗ if and only if m < log2 (1− log θ/ log γ).

Remark 4.1. Combining Corollaries 2.1 and 4.1, we observe that the non-convergence

region of the algorithmic parameters θ, γ, and m is nearly the complement of the conver-

gence region, except the special case m = log2(1− log θ/ log γ). But this special case is

not a concern, since in most cases log2(1− log θ/ log γ) is not an integer.

The case m = log2(1− log θ/ log γ) mentioned above is a specific instance of {Dk} sat-

isfying p-probabilistically ascent with p = p∗. Next, we discuss on the reason why our

analysis does not work under the assumption of p∗-probabilistically ascent. To begin with,

we provide the definition of the recurrent value of a random walk as follows.

Definition 4.1 (Recurrent value of a random walk [10, Section 4.2]). Let {Sk} be a

random walk in Rn. The number x ∈ Rn is said to be a recurrent value for {Sk} if, for

every ε > 0,

P (∥Sk − x∥∞ < ε i.o.) = 1.

Definition 4.2. A random walk {Sk} is said to be recurrent if the set of its recurrent

values is nonempty.

Then we present the well-known Chung-Fuchs Theorem below, which provides a

sufficient condition for a one-dimensional random walk to be recurrent.

Theorem 4.1 (Chung-Fuchs Theorem [10, Theorem 4.2.7]). Let {Sk} be a one-dimensional

random walk. If Sk/k → 0 in probability, then {Sk} is recurrent.

In Theorems 3.2 and 3.3, our proofs depend on the analysis of the probability that

the series
∑

k Uk converges. However, the subsequent discussion reveals that if we al-

low p = p∗ in inequality (3.10), the series
∑

k Uk can even diverge with probability 1,

which is the scenario we aim to avoid.
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Lemma 4.1. Let {Yk} be a 0-1 process satisfying

P
(
Yk = 1 | FY

k−1

)
= p for each k ≥ 0,

where p is a constant between 0 and 1. Then Y0, Y1, . . . are i.i.d.

Proposition 4.1. Let {Yk} be a 0-1 process satisfying

P
(
Yk = 1 | FY

k−1

)
= p∗ for each k ≥ 0,

where p∗ = log γ/ log(θ−1γ). Then we have

P

(
∞∑
k=1

Uk = ∞

)
= 1.

Proof. When γ = 1, it is trivial. When γ > 1, by the assumption of {Yk} and Lemma 4.1,

we know that Y0, Y1, . . . are i.i.d. random variables. Let Ik = Yk log θ+(1−Yk) log γ. Then

we find that I0, I1, . . . are i.i.d., and satisfy that, for every k ≥ 0,

P (Ik = log θ) = 1− P (Ik = log γ) = p∗,

which implies EIk = 0. Define Sk =
∑k−1

ℓ=0 Iℓ. Since I0, I1, . . . are i.i.d., by definition {Sk} is

indeed a one-dimensional random walk. By the i.i.d. property, {Ik} enjoys the law of

large numbers so that Sk/k → 0 in probability. Then Theorem 4.1 tells us the random

walk {Sk} is recurrent. Suppose that δ is one of the recurrent values of {Sk}. Then for

any given ε > 0, with probability 1, there exists a subsequence of {Sk} denoted by {Sk(i)}
such that Sk(i) > δ − ε for all i ≥ 0. Then we have with probability 1,

∞∑
k=1

exp (Sk) ≥
∞∑
i=1

exp
(
Sk(i)

)
> exp (δ − ε)

∞∑
i=1

1 = ∞.

We finish our proof by recalling that Uk = exp(Sk) for all k ≥ 0.

Having explained why the previous analysis fails, in the subsequent part we construct

a {Dk} that is p∗-probabilistically ascent but leads to the convergence of probabilistic

direct search with probability 1. Before presenting the example, we introduce the following

lemma, which is useful for the proof.
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Lemma 4.2 ([14, Theorem 3.1]). Consider Algorithm 2.1 with the complete polling strategy,

and with f being differentiable and lower bounded, and ∇f being Lipschitz continuous.

Define the series

S(κ) =
∞∑
k=1

k−1∏
ℓ=0

γ1−Yℓ(κ)θYℓ(κ), (4.1)

where Yℓ(κ) = 1(cm(Dℓ,−Gℓ) ≤ κ). If there exists a κ > 0 such that P(S(κ) = ∞) = 1,

then

P
(
lim inf
k→∞

∥Gk∥ = 0
)

= 1.

We now provide a concrete example to demonstrate that probabilistic direct search

converges when {Dk} is p∗-probabilistically ascent.

Theorem 4.2. We assume that f : Rn → R is continuously differentiable, and ∇f is

L-Lipschitz continuous. Consider Algorithm 2.1 with Dk = {dk} such that, for each k ≥ 0,

P
(
dk =

Gk

∥Gk∥

∣∣∣∣Fk−1

)
= p∗1(Gk ̸= 0),

P
(
dk = − Gk

∥Gk∥

∣∣∣∣Fk−1

)
= (1− p∗)1(Gk ̸= 0),

P (dk = v0 | Fk−1) = 1(Gk = 0),

where v0 is a fixed unit vector. Then we have

P
(
lim inf
k→∞

∥Gk∥ = 0
)

= 1.

Proof. Applying Lemma 4.2, it is sufficient to prove whether complete polling assumption

holds and whether there exists a positive κ such that the series S(κ) diverges with

probability 1, where S(κ) is defined in the equation (4.1). By the construction of Dk that

it only contains one direction in each iteration, the complete polling assumption holds

automatically. Let us fix κ = 1/2 from now on and rewrite the series S(1/2) as

S(
1

2
) =

∞∑
k=1

exp (Wk)

where Wk =
∑k−1

ℓ=0 (Yℓ(1/2) log θ+(1−Yℓ(1/2)) log γ). We find that it is sufficient to prove

that

P
(
lim sup
k→∞

Wk > −∞
)

= 1.

Based on our assumption on dk, we know that {Wk} is a submartingale with bounded

increments. Then we finish our proof by applying Doob’s decomposition theorem ([10,

Theorem 5.2.10]) and martingale bounded increments theorem ([10, Theorem 5.3.1]).
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5 Conclusion

We establish the non-convergence theory for probabilistic direct search. The proof technique

is mainly based on the analysis of the probability that the series of step sizes converges.

More specifically, the series of step sizes in Algorithm 2.1 converges with a nonzero proba-

bility if the set of polling directions are p-probabilistically ascent with p > log γ/ log(θ−1γ),

where θ and γ are shrinking and expanding factors of the step size, respectively. Moreover,

a weaker assumption is proposed to substitute the “p-probabilistically ascent” assumption

while the nonzero probability of the convergence of series of step sizes is still guaranteed.

The final part demonstrates the tightness of our non-convergence analysis by observing

that there is almost no gap between the convergence and non-convergence theory under

the typical choice of searching sets. Besides, we explain the reason for the failure of our

analysis tools when allowing p-probabilistically ascent with p = p∗ instead of p > p∗.
Finally, we provide a concrete example showing that probabilistic direct search converges

when {Dk} is p∗-probabilistically ascent.
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A Proof of Proposition 3.1

Proof. Fixing q = (p∗ + p)/2, we denote γ1−qθq and (q − p)2/(2p) by λ and ν respectively. We

also denote P(
∑∞

k=1 Uk < t) by F (t) for simplicity throughout the following proof.

Proof of Inequality (3.19).

Fix a t ∈ (θ/(1− θ),∞) and define δ = t− θ/(1− θ). We claim that

F (t) ≥ pkt
[
1− e−νkt

1− e−ν

]
, (A.1)

with

kt =

⌈
1

log λ
[log(1− λ) + log δ]

⌉
.

If the claim is true, it is sufficient to prove that there exists a positive constant C1 such that for

all δ small enough,

pkt
[
1− e−νkt

1− e−ν

]
≥ δC1 ,

which is equivalent to

C1 ≥ log p

log δ

⌈
1

log λ
[log(1− λ) + log δ]

⌉
+

1

log δ
log

[
1− e−νkt

1− e−ν

]
. (A.2)
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By letting t ↓ θ/(1− θ), we observe that the limit of the right-hand side of inequality (A.2) is

log p/ log λ > 0, which implies the existence of C1.

Now we focus on proving the inequality (A.2). Defining Ek0 as in Lemma 3.3, we have for

each k0 ≥ 0,

F (t) ≥ P (Ek0)P

( ∞∑
k=1

Uk < t

∣∣∣∣ Ek0

)
,

According to the definition of Ek0 , we have

F (t) ≥ pk0P

 ∞∑
k=k0+1

Uk < t−
k0∑
k=1

θk
∣∣∣∣ Ek0


≥ pk0P

 ∞∑
k=k0+1

Uk < δ

∣∣∣∣ Ek0

 .

(A.3)

If we further require k0 to satisfy
∑∞

k=k0+1 λ
k ≤ δ, then we have

P

 ∞∑
k=k0+1

Uk < δ

∣∣∣∣ Ek0

 ≥ P

 ∞∑
k=k0+1

Uk <
∞∑

k=k0+1

λk

∣∣∣∣ Ek0


≥ P

 ∞⋂
k=k0+1

{
Uk < λk

} ∣∣∣∣ Ek0


≥ 1−

∞∑
k=k0+1

P
(
Y k ≤ q | Ek0

)
.

(A.4)

Combining inequalities (A.3) and (A.4) with Lemma 3.3, we have

F (t) ≥ pk0+1

[
1− e−ν(k0+1)

1− e−ν

]

for all k0 ≥ [log(1− λ) + log δ]/ log λ. We conclude our proof by choosing k0 = kt.

Proof of Inequality (3.20).

Fix a t > θ/(1− θ). We claim that

F (t) ≥ 1− e−ν(kt+1)

1− e−ν
, (A.5)

with

kt =

⌊
1

log γ
log

[
(γ − 1)

(
t− λ

1− λ

)]
− 1

⌋
.

If the claim is true, then it is sufficient to prove that there exists a positive constant C3 such

that for all t large enough,
e−ν(kt+1)

1− e−ν
≤ t−C3 ,
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which is equivalent to

C3 ≤ ν

log t

[
log(γ − 1)

log γ
+

log(t− λ
1−λ)

log γ

]
+

log(1− e−ν)

log t
. (A.6)

By letting t → ∞, we observe that the limit of the right-hand side of inequality (A.6)

is ν/ log γ > 0, which implies the existence of C3.

Now we focus on proving the inequality (A.6). For each k0 ≥ 0, we have

F (t) ≥ P

 ∞∑
k=k0+1

Uk < t−
k0∑
k=1

γk

 .

If we further require k0 to satisfy
∑∞

k=1 λ
k ≤ t−

∑k0
k=1 γ

k, then we have then we have

F (t) ≥ P

 ∞∑
k=k0+1

Uk <
∞∑

k=k0+1

λk


≥ 1− e−ν(k0+1)

1− e−ν
,

where we omit the same steps before the last inequality as in the inequality (A.4). We finish our

proof by choosing k0 = kt to satisfy the requirement.
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