Non-convergence Analysis of Probabilistic Direct Search

The 25th International Symposium on Mathematical Programming

Cunxin Huang

Joint work with Zaikun Zhang

Montréal, Canada July 26, 2024

The Hong Kong Polytechnic University

Non-convergence Analysis of Probabilistic Direct Search

The 25th International Symposium on Mathematical Programming

Zaikun Zhang (replacing Cunxin Huang)

Joint work with Cunxin Huang

Montréal, Canada July 26, 2024

The Hong Kong Polytechnic University

PRIMA and my gratitude

libprima.net

PRIMA is an acronym for

"Reference Implementation for Powell's Methods with Modernization and Amelioration".

- Number of lines: > 100,000.
- The total time I spent on PRIMA:

 \geq 3 years \times 300 days per year \times 10 hours per day = 9,000 hours.

In the past years, due to the gap in my publication record while working on PRIMA, I needed a lot of support from the community. **Thank you** for the help and support, explicit or implicit, known or unknown to me. Without your support, I would not have survived. Consider an algorithm

 $\mathscr{A} : \Xi \times \mathbb{F} \times \mathcal{X} \to \mathcal{X}^{\infty}, \quad (\xi, f, x_0) \mapsto \{x_k\}.$

- + ξ represents algorithmic parameters.
- \cdot *f* is the objective function.
- x_0 is the starting point.

When *A* is deterministic:

• (Global) Convergence analysis: For all $(\xi, f, x_0) \in \hat{\Xi} \times \hat{\mathbb{F}} \times \mathcal{X}$, prove

 $\{x_k\}$ achieves stationarity asymptotically.

• Non-convergence analysis: For all $(\xi, f, x_0) \in \tilde{\Xi} \times \tilde{\mathbb{F}} \times \tilde{\mathcal{X}}$, prove

 $\{x_k\}$ fails to achieve stationarity asymptotically.

Consider an algorithm

 $\mathscr{A} : \Xi \times \mathbb{F} \times \mathcal{X} \to \mathcal{X}^{\infty}, \quad (\xi, f, x_0) \mapsto \{x_k\}.$

- + ξ represents algorithmic parameters.
- \cdot *f* is the objective function.
- $\cdot x_0$ is the starting point.

When \mathscr{A} is random:

• (Global) Convergence analysis: For all $(\xi, f, x_0) \in \hat{\Xi} \times \hat{\mathbb{F}} \times \mathcal{X}$, prove

 $\mathbb{P}(\{x_k\} \text{ achieves stationarity asymptotically}) = 1.$

• Non-convergence analysis: For all $(\xi, f, x_0) \in \tilde{\Xi} \times \tilde{\mathbb{F}} \times \tilde{\mathcal{X}}$, prove

 $\mathbb{P}(\{x_k\} \text{ fails to achieve stationarity asymptotically}) > 0.$

- Sharpen our knowledge about the algorithm.
- Deepen our understanding about the convergence analysis.
- Guide the selection of algorithmic parameters.
- Provide new perspectives on convergence analysis.

Probabilistic Direct Search (PDS)

Derivative-Free Optimization (DFO)

Derivative-Free Optimization

- Do not use derivatives (first-order info.), only use function values
- · Closely related: zeroth-order/black-box optimization ...

Derivatives are often not available in applications

Quantum Computing

Machine Learning

Circuit Design

How to determine iterates?

- Direct-search methods: "simple" comparison of function values
- $\cdot\,$ Model-based methods: build a surrogate of the objective function

Direct-search methods¹

Model-based methods²

¹Source: Kolda, Lewis, and Torczon 2003 ²Source: Larson, Menickelly, and Wild 2019

Algorithm 1: Direct Search based on sufficient decrease

Input: $x_0 \in \mathbb{R}^n$, $\alpha_0 \in (0, \infty)$, $c \in (0, \infty)$, $0 < \theta < 1 < \gamma$.

Algorithm 1: Direct Search based on sufficient decrease

Input: $x_0 \in \mathbb{R}^n$, $\alpha_0 \in (0, \infty)$, $c \in (0, \infty)$, $0 < \theta < 1 < \gamma$. for $k = 0, 1, \dots$ do

Algorithm 1: Direct Search based on sufficient decrease

Input: $x_0 \in \mathbb{R}^n$, $\alpha_0 \in (0, \infty)$, $c \in (0, \infty)$, $0 < \theta < 1 < \gamma$. for $k = 0, 1, \dots$ do Select a finite set of directions $\mathcal{D}_k \subset \mathbb{R}^n$.

Algorithm 1: Direct Search based on sufficient decrease

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), c \in (0, \infty), 0 < \theta < 1 < \gamma.
for k = 0, 1, \dots do
Select a finite set of directions \mathcal{D}_k \subset \mathbb{R}^n.
(In this talk, assume \mathcal{D}_k is a set of unit vectors for simplicity)
Set d_k = \arg \min\{f(x_k + \alpha_k d) : d \in \mathcal{D}_k\}.
(complete polling for simplicity)
```

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), c \in (0, \infty), 0 < \theta < 1 < \gamma.

for k = 0, 1, \dots do

Select a finite set of directions \mathcal{D}_k \subset \mathbb{R}^n.

(In this talk, assume \mathcal{D}_k is a set of unit vectors for simplicity)

Set d_k = \arg \min\{f(x_k + \alpha_k d) : d \in \mathcal{D}_k\}.

(complete polling for simplicity)

if f(x_k + \alpha_k d_k) < f(x_k) - c\alpha_k^2 then
```

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), c \in (0, \infty), 0 < \theta < 1 < \gamma.
for k = 0, 1, ... do
    Select a finite set of directions \mathcal{D}_{k} \subset \mathbb{R}^{n}.
    (In this talk, assume \mathcal{D}_k is a set of unit vectors for simplicity)
    Set d_k = \arg\min\{f(x_k + \alpha_k d) : d \in \mathcal{D}_k\}.
      (complete polling for simplicity)
    if f(x_k + \alpha_k d_k) < f(x_k) - c \alpha_k^2 then
         Set x_{k+1} = x_k + \alpha_k d_k and \alpha_{k+1} = \gamma \alpha_k.
         (Move and expand step size)
    else
          Set x_{k+1} = x_k and \alpha_{k+1} = \theta \alpha_k.
        (Stay and shrink step size)
```

Algorithm 1: Probabilistic Direct Search based on sufficient decrease

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), c \in (0, \infty), 0 < \theta < 1 < \gamma.
for k = 0, 1, ... do
    Select a finite set of directions \mathcal{D}_k \subset \mathbb{R}^n randomly.
    (In this talk, assume \mathcal{D}_k is a set of unit vectors for simplicity)
    Set d_k = \arg\min\{f(x_k + \alpha_k d) : d \in \mathcal{D}_k\}.
      (complete polling for simplicity)
    if f(x_k + \alpha_k d_k) < f(x_k) - c \alpha_k^2 then
         Set x_{k+1} = x_k + \alpha_k d_k and \alpha_{k+1} = \gamma \alpha_k.
         (Move and expand step size)
    else
          Set x_{k+1} = x_k and \alpha_{k+1} = \theta \alpha_k.
        (Stay and shrink step size)
```

Algorithm 1: Probabilistic Direct Search based on sufficient decrease

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), c \in (0, \infty), 0 < \theta < 1 < \gamma.
for k = 0, 1, ... do
    Select a finite set of directions \mathcal{D}_k \subset \mathbb{R}^n randomly.
    (In this talk, assume \mathcal{D}_k is a set of unit vectors for simplicity)
    Set d_k = \arg\min\{f(x_k + \alpha_k d) : d \in \mathcal{D}_k\}.
      (complete polling for simplicity)
    if f(x_k + \alpha_k d_k) < f(x_k) - c \alpha_k^2 then
         Set x_{k+1} = x_k + \alpha_k d_k and \alpha_{k+1} = \gamma \alpha_k.
         (Move and expand step size)
    else
          Set x_{k+1} = x_k and \alpha_{k+1} = \theta \alpha_k.
        (Stay and shrink step size)
```

Typical choice of $\{\mathcal{D}_k\}$ (GRVZ 2015): $\mathcal{D}_k = \{d_1, \dots, d_m\}$ with $d_\ell \stackrel{\text{i.i.d.}}{\sim} U(\mathcal{S}^{n-1})$

Algorithm 1: Probabilistic Direct Search based on sufficient decrease

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), c \in (0, \infty), 0 < \theta < 1 < \gamma.
for k = 0, 1, ... do
    Select a finite set of directions \mathcal{D}_k \subset \mathbb{R}^n randomly.
    (In this talk, assume \mathcal{D}_k is a set of unit vectors for simplicity)
    Set d_k = \arg\min\{f(x_k + \alpha_k d) : d \in \mathcal{D}_k\}.
      (complete polling for simplicity)
    if f(x_k + \alpha_k d_k) < f(x_k) - c\alpha_k^2 then
         Set x_{k+1} = x_k + \alpha_k d_k and \alpha_{k+1} = \gamma \alpha_k.
         (Move and expand step size)
    else
          Set x_{k+1} = x_k and \alpha_{k+1} = \theta \alpha_k.
         (Stay and shrink step size)
```

Typical choice of $\{\mathcal{D}_k\}$ (GRVZ 2015): $\mathcal{D}_k = \{d_1, \dots, d_m\}$ with $d_\ell \stackrel{\text{i.i.d.}}{\sim} U(\mathcal{S}^{n-1})$ N.B.: typical choice in the deterministic case is $\{\pm e_i\}_{i=1}^n$, Coordinate Search (CS)

Rosenbrock "banana" function:

$$f(x) = \sum_{i=1}^{n-1} \left[(1-x_i)^2 + 100(x_{i+1} - x_i^2)^2 \right]$$

A numerical example: CS v.s. PDS with 2 directions

Function value v.s. number of function evaluations

Worst case complexity of function evaluations (GRVZ 2015) $O(n^2 \epsilon^{-2})$ for CS while $O(n \epsilon^{-2})$ for PDS
Cosine measure

Definition (Cosine measure w.r.t. a vector)

Given a finite set $\mathcal{D} \subseteq \mathbb{R}^n \setminus \{0\}$ and a vector $v \in \mathbb{R}^n \setminus \{0\}$, define

$$\operatorname{cm}(\mathcal{D}, v) = \max_{d \in \mathcal{D}} \frac{d^{\top} v}{\|d\| \|v\|},$$

which is the cosine measure of \mathcal{D} with respect to v.

Example $cm(\mathcal{D}, v) = \cos \theta \qquad \qquad d_3 \qquad \qquad d_4 \qquad \qquad d_4$

Cosine measure

Definition (Cosine measure w.r.t. a vector)

Given a finite set $\mathcal{D} \subseteq \mathbb{R}^n \setminus \{0\}$ and a vector $v \in \mathbb{R}^n \setminus \{0\}$, define

$$\operatorname{cm}(\mathcal{D}, v) = \max_{d \in \mathcal{D}} \frac{d^{\top} v}{\|d\| \|v\|},$$

which is the cosine measure of \mathcal{D} with respect to v.

 $\operatorname{cm}(\mathcal{D},v)$ measures the ability of $\mathcal D$ to "approximate" v

Convergence theory

Definition (*p*-probabilistically κ -descent)

 $\{\mathcal{D}_k\}$ is said to be p-probabilistically κ -descent, if

$$\mathbb{P}\left(\operatorname{cm}(\mathcal{D}_k, -g_k) \ge \kappa \mid \mathcal{D}_0, \dots, \mathcal{D}_{k-1}\right) \ge p \quad \text{for each } k \ge 0,$$

where $g_k = \nabla f(x_k)$.

Intuitive meaning of p-probabilistically κ -descent

Each \mathcal{D}_k is "good enough" with probability at least p no matter what has happened in the history

Convergence theory

Definition (*p*-probabilistically κ-descent)

 $\{\mathcal{D}_k\}$ is said to be p-probabilistically κ -descent, if

$$\mathbb{P}\left(\operatorname{cm}(\mathcal{D}_k, -g_k) \ge \kappa \mid \mathcal{D}_0, \dots, \mathcal{D}_{k-1}\right) \ge p \quad \text{for each } k \ge 0,$$

where $g_k = \nabla f(x_k)$.

Intuitive meaning of *p*-probabilistically κ -descent Each \mathcal{D}_k is "good enough" with probability at least *p* no matter what has happened in the history

Theorem (GRVZ 2015)

If $\{\mathcal{D}_k\}$ is p_0 -probabilistically κ -descent with $\kappa > 0$ and

$$p_0 = \frac{\log \theta}{\log(\gamma^{-1}\theta)},$$

then PDS converges w.p.1 when f is L-smooth and lower-bounded.

Corollary (GRVZ 2015)

If $\mathcal{D}_k = \{d_1, \dots, d_m\}$, where $d_\ell \overset{i.i.d.}{\sim} U(\mathcal{S}^{n-1})$, then PDS converges w.p.1 if

$$m > \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right).$$

Corollary (GRVZ 2015)

If $\mathcal{D}_k = \{d_1, \ldots, d_m\}$, where $d_\ell \overset{i.i.d.}{\sim} U(\mathcal{S}^{n-1})$, then PDS converges w.p.1 if

$$m > \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right).$$

Questions:

- Is p_0 -probabilistically κ -descent an essential assumption or a technical one? (Such supermartingale-like assumptions are ubiquitous in the convergence analysis of randomized methods!)
- What will happen if

$$m \leq \log_2\left(1 - \frac{\log \theta}{\log \gamma}\right)?$$

- Objective function: $f(x) = x^{\mathsf{T}}x/2$
- Initial point: $x_0 = (-10, 0)^\mathsf{T}$
- Stopping criterion: $\alpha_k \leq \text{machine epsilon}$
- Number of experiments: 100,000
- + Parameters of PDS: $\alpha_0 = 1, \theta = 0.25, \gamma = 1.5, m = 2$, which render

$$m = 2 < 2.143 \approx \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right)$$

A simple test (Cont'd)

Note: each black dot represents the output point of one run of PDS.

Many well-known algorithms have non-convergence examples

- Powell, On search directions for minimization algorithms, 1973.
- Yuan, An example of non-convergence of trust region algorithms, 1998.
- Reddi, Kale, and Kumar, On the convergence of Adam and beyond, 2018.
- Chen, He, Ye, and Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, 2016.
- Dai, A perfect example for the BFGS method, 2013.
- Mascarenhas, The divergence of the BFGS and Gauss Newton methods, 2014.

Many well-known algorithms have non-convergence examples

- Powell, On search directions for minimization algorithms, 1973.
- Yuan, An example of non-convergence of trust region algorithms, 1998.
- Reddi, Kale, and Kumar, On the convergence of Adam and beyond, 2018.
- Chen, He, Ye, and Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, 2016.
- Dai, A perfect example for the BFGS method, 2013.
- Mascarenhas, The divergence of the BFGS and Gauss Newton methods, 2014.

Instead of finding a non-convergence example, can we develop a theorem?

An overview of our theory

We assume that f is smooth and convex (explained later).

We denote the optimal solution set of f by \mathcal{S}^* .

We will establish the following.

Under some assumption on $\{\mathcal{D}_k\}$ and algorithmic parameters, there exist choices of x_0 such that

$$\mathbb{P}\left(\liminf_{k\to\infty}\operatorname{dist}(x_k,\mathcal{S}^*)>0\right)>0.$$

Differences from a non-convergence example:

- one function v.s. some function class
- special parameters v.s. conditions for parameters
- a specific initial point v.s.
- a region for initial points

Recall p-probabilistically κ -descent

 $\mathbb{P}\left(\operatorname{cm}\left(\mathcal{D}_{k},-g_{k}\right)\geq\kappa\mid\mathcal{D}_{0},\ldots,\mathcal{D}_{k-1}\right)\geq p\quad\text{for each }k\geq0.$

Recall p-probabilistically κ -descent

 $\mathbb{P}\left(\operatorname{cm}\left(\mathcal{D}_{k},-g_{k}\right)\geq\kappa\mid\mathcal{D}_{0},\ldots,\mathcal{D}_{k-1}\right)\geq p\quad\text{for each }k\geq0.$

q-probabilistically ascent

 $\mathbb{P}\left(\operatorname{cm}\left(\mathcal{D}_{k},-g_{k}\right)\leq\mathbf{0}\mid\mathcal{D}_{0},\ldots,\mathcal{D}_{k-1}\right)\geq q\quad\text{for each }k\geq0.$

Recall p-probabilistically κ -descent

$$\mathbb{P}\left(\operatorname{cm}\left(\mathcal{D}_{k},-g_{k}\right)\geq\kappa\mid\mathcal{D}_{0},\ldots,\mathcal{D}_{k-1}\right)\geq p\quad\text{for each }k\geq0.$$

q-probabilistically ascent

 $\mathbb{P}\left(\operatorname{cm}\left(\mathcal{D}_{k},-g_{k}\right)\leq\mathbf{0}\mid\mathcal{D}_{0},\ldots,\mathcal{D}_{k-1}\right)\geq q\quad\text{for each }k\geq0.$

Note

If $cm(\mathcal{D}_k, -g_k) \leq 0$, then \mathcal{D}_k is "bad" (no descent direction).

Why assuming convexity?

Why assuming convexity?

• Convexity connects $\operatorname{cm}(\mathcal{D}_k, -g_k) \leq 0$ and shrinking of step size

- Convexity connects $\operatorname{cm}\left(\mathcal{D}_k, -g_k\right) \leq 0$ and shrinking of step size
- $\{\mathcal{D}_k\}$ is probabilistic ascent implies α_k "often" shrinks

 $\{\mathcal{D}_k\}$ is probabilistically ascent

From probabilistic ascent to non-convergence: How?

From probabilistic ascent to non-convergence: How?

From probabilistic ascent to non-convergence: How?

 $\mathbb{P}(\text{non-convergence}) > 0 \text{ if } \operatorname{dist}(x_0, \mathcal{S}^*) \text{ is "large"}?$

• Define the indicator function for "bad \mathcal{D}_k ":

 $Y_k = \mathbb{1}(\operatorname{cm}\left(\mathcal{D}_k, -g_k\right) \le 0)$

• Define the indicator function for "bad \mathcal{D}_k ":

$$Y_k = \mathbb{1}(\operatorname{cm}\left(\mathcal{D}_k, -g_k\right) \le 0)$$

• Note the following inequality between step sizes (f is convex):

$$\alpha_{k+1} \leq \begin{cases} \gamma \alpha_k, & \text{if } Y_k = 0\\ \theta \alpha_k, & \text{if } Y_k = 1 \end{cases} = \gamma^{1 - Y_k} \theta^{Y_k} \alpha_k$$

• Define the indicator function for "bad \mathcal{D}_k ":

$$Y_k = \mathbb{1}(\operatorname{cm}\left(\mathcal{D}_k, -g_k\right) \le 0)$$

• Note the following inequality between step sizes (f is convex):

$$\alpha_{k+1} \leq \begin{cases} \gamma \alpha_k, & \text{if } Y_k = 0\\ \theta \alpha_k, & \text{if } Y_k = 1 \end{cases} = \gamma^{1 - Y_k} \theta^{Y_k} \alpha_k$$

• Use the above inequality iteratively:

$$\alpha_k \le \alpha_0 \prod_{\ell=0}^{k-1} \gamma^{1-Y_\ell} \theta^{Y_\ell}$$

• Define the indicator function for "bad \mathcal{D}_k ":

$$Y_k = \mathbb{1}(\operatorname{cm}\left(\mathcal{D}_k, -g_k\right) \le 0)$$

• Note the following inequality between step sizes (f is convex):

$$\alpha_{k+1} \leq \begin{cases} \gamma \alpha_k, & \text{if } Y_k = 0\\ \theta \alpha_k, & \text{if } Y_k = 1 \end{cases} = \gamma^{1 - Y_k} \theta^{Y_k} \alpha_k$$

• Use the above inequality iteratively:

$$\alpha_k \le \alpha_0 \prod_{\ell=0}^{k-1} \gamma^{1-Y_\ell} \theta^{Y_\ell}$$

• Get an upper bound of the series of step sizes:

$$\sum_{k=1}^{\infty} \alpha_k \le \alpha_0 \sum_{k=1}^{\infty} \prod_{\ell=0}^{k-1} \gamma^{1-Y_\ell} \theta^{Y_\ell} =: \alpha_0 S$$

 $\cdot\,$ Analyze the behavior of the random series S

A closer look at the random series \boldsymbol{S}

Recall that

$$S = \sum_{k=1}^{\infty} \prod_{\ell=0}^{k-1} \gamma^{1-Y_{\ell}} \theta^{Y_{\ell}},$$

where $Y_{\ell} = \mathbb{1}(\operatorname{cm}(\mathcal{D}_{\ell}, -g_{\ell}) \leq 0).$

A closer look at the random series S

Recall that

$$S = \sum_{k=1}^{\infty} \prod_{\ell=0}^{k-1} \gamma^{1-Y_{\ell}} \theta^{Y_{\ell}},$$

where $Y_{\ell} = \mathbb{1}(\operatorname{cm}(\mathcal{D}_{\ell}, -g_{\ell}) \leq 0).$

Two questions

 \cdot (Q1) Does there exist a constant ζ such that

 $\mathbb{P}\left(S < \zeta\right) \ > \ 0?$

 \cdot (Q2) Moreover, can we specify the value of ζ ?

Answer to Q1 and Q2

Proposition

If $\{\mathcal{D}_k\}$ is *q*-probabilistically ascent with $q > q_0$, where

$$q_0 = 1 - p_0 = \frac{\log \gamma}{\log(\theta^{-1}\gamma)}$$

then 1.

2.

 $\mathbb{P}\left(S < \infty\right) = 1,$ $\mathbb{P}\left(S < \zeta\right) > 0 \quad \Longleftrightarrow \quad \zeta > \frac{\theta}{1-\theta}.$

Answer to Q1 and Q2

Proposition

If $\{\mathcal{D}_k\}$ is *q*-probabilistically ascent with $q > q_0$, where

$$q_0 = 1 - p_0 = \frac{\log \gamma}{\log(\theta^{-1}\gamma)},$$

then 1.

$$\mathbb{P}\left(S<\infty\right) \ = \ 1,$$

$$\mathbb{P}\left(S < \zeta\right) > 0 \quad \Longleftrightarrow \quad \zeta > \frac{\theta}{1-\theta}.$$

Note

2.

- + $\mathbb{P}(S<\infty)=1$ already implies the existence of a ζ but not its value.
- The lower bound in 2 is tight, as $S = \sum_{k=1}^{\infty} \prod_{\ell=0}^{k-1} \gamma^{1-Y_{\ell}} \theta^{Y_{\ell}} \geq \frac{\theta}{1-\theta}.$

Theorem

Under aforementioned assumptions on f, if the sequence $\{D_k\}$ in PDS is q-probabilistically ascent with $q > q_0$, then

$$\mathbb{P}\left(\liminf_{k\to\infty}\operatorname{dist}(x_k,\mathcal{S}^*)>0\right) > 0,$$

provided that $\operatorname{dist}(x_0, \mathcal{S}^*) > \alpha_0/(1-\theta)$.

Let $\mathcal{D}_k = \{d_1, \ldots, d_m\}$, where $d_\ell \stackrel{\text{i.i.d.}}{\sim} U(\mathcal{S}^{n-1})$.

Recall that PDS is convergent if

$$m > \log_2\left(1 - \frac{\log \theta}{\log \gamma}\right).$$

Let $\mathcal{D}_k = \{d_1, \ldots, d_m\}$, where $d_\ell \stackrel{\text{i.i.d.}}{\sim} U(\mathcal{S}^{n-1})$.

Recall that PDS is convergent if

$$m > \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right).$$

With our non-convergence analysis, PDS is non-convergent if

$$\mathbb{P}\left(\operatorname{cm}\left(\mathcal{D}_{k},-g_{k}\right)\leq0\mid\mathcal{D}_{0},\ldots,\mathcal{D}_{k-1}\right) > q_{0},$$

Let $\mathcal{D}_k = \{d_1, \ldots, d_m\}$, where $d_\ell \stackrel{\text{i.i.d.}}{\sim} U(\mathcal{S}^{n-1})$.

Recall that PDS is convergent if

$$m > \log_2\left(1 - \frac{\log \theta}{\log \gamma}\right).$$

With our non-convergence analysis, PDS is non-convergent if

$$\mathbb{P}\left(\operatorname{cm}\left(\mathcal{D}_{k},-g_{k}\right)\leq0\mid\mathcal{D}_{0},\ldots,\mathcal{D}_{k-1}\right)>q_{0},$$

which is equivalent to

$$\left(\frac{1}{2}\right)^m > q_0 = \frac{\log \gamma}{\log(\theta^{-1}\gamma)},$$

Let
$$\mathcal{D}_k = \{d_1, \ldots, d_m\}$$
, where $d_\ell \stackrel{\text{i.i.d.}}{\sim} U(\mathcal{S}^{n-1})$.

Recall that PDS is convergent if

$$m > \log_2\left(1 - \frac{\log \theta}{\log \gamma}\right).$$

With our non-convergence analysis, PDS is non-convergent if

$$\mathbb{P}\left(\operatorname{cm}\left(\mathcal{D}_{k},-g_{k}\right)\leq0\mid\mathcal{D}_{0},\ldots,\mathcal{D}_{k-1}\right) > q_{0},$$

which is equivalent to

$$\left(\frac{1}{2}\right)^m > q_0 = \frac{\log \gamma}{\log(\theta^{-1}\gamma)},$$

or, equivalently,

$$m \ < \ \log_2\left(1-\frac{\log\theta}{\log\gamma}\right).$$

Tightness of our assumption on $\{D_k\}$

Our assumption on $\{\mathcal{D}_k\}$:

q-probabilistically ascent with $q > q_0$.

Natural question:

Is it sufficient to require $q \ge q_0$?

Tightness of our assumption on $\{D_k\}$

Our assumption on $\{\mathcal{D}_k\}$:

q-probabilistically ascent with $q > q_0$.

Natural question:

Is it sufficient to require $q \ge q_0$?

Answer: NO!
Tightness of our assumption on $\{\mathcal{D}_k\}$

Our assumption on $\{\mathcal{D}_k\}$:

q-probabilistically ascent with $q > q_0$.

Natural question:

Is it sufficient to require $q \ge q_0$?

Answer: NO!

Example

We assume

- $\theta = 1/2$ and $\gamma = 2$, which implies $q_0 = 1/2$;
- $\mathcal{D}_k = \{g_k / \|g_k\|\}$ or $\{-g_k / \|g_k\|\}$ with probability 1/2, respectively.

Then PDS converges w.p.1.

Consider the series

$$S(\kappa) = \sum_{k=1}^{\infty} \prod_{\ell=0}^{k-1} \gamma^{1-Y_{\ell}(\kappa)} \theta^{Y_{\ell}(\kappa)},$$

where $Y_{\ell}(\kappa) = \mathbb{1}(\operatorname{cm}(\mathcal{D}_{\ell}, -g_{\ell}) \leq \kappa).$

Consider the series

$$S(\kappa) = \sum_{k=1}^{\infty} \prod_{\ell=0}^{k-1} \gamma^{1-Y_{\ell}(\kappa)} \theta^{Y_{\ell}(\kappa)},$$

where $Y_{\ell}(\kappa) = \mathbb{1}(\operatorname{cm}(\mathcal{D}_{\ell}, -g_{\ell}) \leq \kappa).$

Roughly speaking, $S(0) < \infty$ implies non-convergence of PDS. What can we say about convergence using $S(\kappa)$?

Consider the series

$$S(\kappa) = \sum_{k=1}^{\infty} \prod_{\ell=0}^{k-1} \gamma^{1-Y_{\ell}(\kappa)} \theta^{Y_{\ell}(\kappa)},$$

where $Y_{\ell}(\kappa) = \mathbb{1}(\operatorname{cm}(\mathcal{D}_{\ell}, -g_{\ell}) \leq \kappa).$

Roughly speaking, $S(0) < \infty$ implies non-convergence of PDS.

What can we say about convergence using $S(\kappa)$?

Theorem

If there exists a $\kappa > 0$ such that $S(\kappa) = \infty$, then DS converges.

Consider the series

$$S(\kappa) = \sum_{k=1}^{\infty} \prod_{\ell=0}^{k-1} \gamma^{1-Y_{\ell}(\kappa)} \theta^{Y_{\ell}(\kappa)},$$

where $Y_{\ell}(\kappa) = \mathbb{1}(\operatorname{cm}(\mathcal{D}_{\ell}, -g_{\ell}) \leq \kappa).$

Roughly speaking, $S(0) < \infty$ implies non-convergence of PDS.

What can we say about convergence using $S(\kappa)$?

Theorem

If there exists a $\kappa > 0$ such that $S(\kappa) = \infty$, then DS converges.

Relation with existing result in [GRVZ 2015]

 p_0 -probabilistically κ -descent \implies $S(\kappa) = \infty$ w.p.1

In this talk, we

- theoretically explain the non-convergence phenomenon of PDS,
- \cdot find out the behavior of PDS is closely related to the random series

$$S = \sum_{k=1}^{\infty} \prod_{\ell=0}^{k-1} \gamma^{1-Y_{\ell}} \theta^{Y_{\ell}}.$$

Non-convergence analysis can

- sharpen our knowledge about the algorithm,
- · deepen our understanding about the convergence analysis,
- guide the selection of algorithmic parameters, and
- provide new perspectives on convergence analysis.

Thank you!

One more thing: OptiProfiler

github.com/optiprofiler

OptiProfiler (joint work with Cunxin Huang and Tom M. Ragonneau) is

a benchmarking platform for DFO solvers.

Our goal: fair, convenient, and uniform benchmarking.

- Creating performance profiles, data profiles, and log-ratio profiles [Moré, Wild 2009; Shi, Xuan, Oztoprak, and Nocedal 2023]
- Providing multiple types of tests noisy function, unrelaxable constraints, randomized initial point ...
- Implemented in Python and MATLAB
- Default problem set: S2MPJ [Gratton, Toint 2024]

One more thing: OptiProfiler

Example (MATLAB):

benchmark({@bds, @fminsearch}, "noisy")

One more thing: OptiProfiler

Example (MATLAB):

benchmark({@bds, @fminsearch}, "noisy")

N.B.: Separate profiles can also be generated.

References I

- Chen, C. et al. (2016). "The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent". Math. Program. 155, pp. 57–79.
- Conn, A. R., Scheinberg, K., and Vicente, L. N. (2009). Introduction to Derivative-Free Optimization. Vol. 8. MOS-SIAM Ser. Optim. Philadelphia: SIAM.
- Durrett, R. (2010). Probability: Theory and Examples. Fourth. Camb. Ser. Stat. Probab. Math. Cambridge: Cambridge University Press.
- Fermi, E. and Metropolis, N. (1952). Numerical solution of a minimum problem. Tech. rep. Alamos National Laboratory, Los Alamos, USA.
- Ghanbari, H. and Scheinberg, K. (2017). "Black-box optimization in machine learning with trust region based derivative free algorithm". arXiv:1703.06925.

References II

- Gratton, S. et al. (2015). "Direct search based on probabilistic descent". SIAM J. Optim. 25, pp. 1515–1541.
- Kolda, T. G., Lewis, R. M., and Torczon, V. (2003). "Optimization by direct search: New perspectives on some classical and modern methods". SIAM Rev. 45, pp. 385–482.
- Larson, J., Menickelly, M., and Wild, S. M. (2019). "Derivative-free optimization methods". Acta Numer. 28, pp. 287–404.
- Mascarenhas, W. (2014). "The divergence of the BFGS and Gauss Newton methods". Math. Program. 147, pp. 253–276.
- Powell, M. J. D. (1973). "On search directions for minimization algorithms". Math. Program. 4, pp. 193–201.

References III

 Yuan, Y. (1998). "An example of non-convergence of trust region algorithms". In: Advances in Nonlinear Programming. Ed. by Y. Yuan. Dordrecht: Kluwer Academic Publishers, pp. 205–215.