
Non-convergence Analysis of
Probabilistic Direct Search

2nd Derivative-Free Optimization Symposium

Cunxin Huang

Supervised by Prof. Xiaojun Chen and Dr. Zaikun Zhang

Padova, Italy June 28, 2024

The Hong Kong Polytechnic University

Brief introduction to Probabilistic Direct Search

Derivative-Free
Optimization

Direct
Search

Randomized
Algorithms

The algorithm we consider in this talk:
Probabilistic Direct Search (PDS)
(Gratton, Royer, Vicente, and Zhang 2015)

1/30

Apologies

• To everyone: Venice is so beautiful that I cannot help but get lost at
the last minute.

Solution: I will skip some slides to save time.
• To Clément: my bad title may give you a sense that your paper with
Zaikun is wrong.

Solution: my talk will show that your theorem is correct and tight.

• To Zaikun: recall his words in his talk “I always tell my students that
DFO is vivid because of its applications.”

Solution: I will show some computation works at the end.

2/30

Apologies

• To everyone: Venice is so beautiful that I cannot help but get lost at
the last minute.

Solution: I will skip some slides to save time.

• To Clément: my bad title may give you a sense that your paper with
Zaikun is wrong.

Solution: my talk will show that your theorem is correct and tight.
• To Zaikun: recall his words in his talk “I always tell my students that
DFO is vivid because of its applications.”

Solution: I will show some computation works at the end.

2/30

Apologies

• To everyone: Venice is so beautiful that I cannot help but get lost at
the last minute.

Solution: I will skip some slides to save time.

• To Clément: my bad title may give you a sense that your paper with
Zaikun is wrong.

Solution: my talk will show that your theorem is correct and tight.

• To Zaikun: recall his words in his talk “I always tell my students that
DFO is vivid because of its applications.”

Solution: I will show some computation works at the end.

2/30

Apologies

• To everyone: Venice is so beautiful that I cannot help but get lost at
the last minute.
Solution: I will skip some slides to save time.

• To Clément: my bad title may give you a sense that your paper with
Zaikun is wrong.

Solution: my talk will show that your theorem is correct and tight.

• To Zaikun: recall his words in his talk “I always tell my students that
DFO is vivid because of its applications.”

Solution: I will show some computation works at the end.

2/30

Apologies

• To everyone: Venice is so beautiful that I cannot help but get lost at
the last minute.
Solution: I will skip some slides to save time.

• To Clément: my bad title may give you a sense that your paper with
Zaikun is wrong.
Solution: my talk will show that your theorem is correct and tight.

• To Zaikun: recall his words in his talk “I always tell my students that
DFO is vivid because of its applications.”

Solution: I will show some computation works at the end.

2/30

Apologies

• To everyone: Venice is so beautiful that I cannot help but get lost at
the last minute.
Solution: I will skip some slides to save time.

• To Clément: my bad title may give you a sense that your paper with
Zaikun is wrong.
Solution: my talk will show that your theorem is correct and tight.

• To Zaikun: recall his words in his talk “I always tell my students that
DFO is vivid because of its applications.”
Solution: I will show some computation works at the end.

2/30

What is Derivative-Free Optimization and why

Derivative-Free Optimization (DFO)
• Do not use derivatives (first-order info.), only use function values
• Also called: zeroth-order/black-box/simulation-based optimization

Derivatives are often not available in applications

Nuclear Physics Machine Learning Circuit Design

Difficulties

• Problems are often noisy (naive finite difference?)
• Each function evaluation is expensive (e.g., PDE simulation)

3/30

What is Derivative-Free Optimization and why

Derivative-Free Optimization (DFO)
• Do not use derivatives (first-order info.), only use function values
• Also called: zeroth-order/black-box/simulation-based optimization

Derivatives are often not available in applications

Nuclear Physics Machine Learning Circuit Design

Difficulties

• Problems are often noisy (naive finite difference?)
• Each function evaluation is expensive (e.g., PDE simulation)

3/30

What is Derivative-Free Optimization and why

Derivative-Free Optimization (DFO)
• Do not use derivatives (first-order info.), only use function values
• Also called: zeroth-order/black-box/simulation-based optimization

Derivatives are often not available in applications

Nuclear Physics Machine Learning Circuit Design

Difficulties

• Problems are often noisy (naive finite difference?)
• Each function evaluation is expensive (e.g., PDE simulation)

3/30

What is Derivative-Free Optimization and why

Derivative-Free Optimization (DFO)
• Do not use derivatives (first-order info.), only use function values
• Also called: zeroth-order/black-box/simulation-based optimization

Derivatives are often not available in applications

Nuclear Physics Machine Learning Circuit Design

Difficulties

• Problems are often noisy (naive finite difference?)
• Each function evaluation is expensive (e.g., PDE simulation)

3/30

Direct-search methods and model-based methods

How to determine iterates?

• Direct-search methods: “simple” comparison of function values

• Model-based methods: build a surrogate of the objective function

Direct-search methods1 Model-based methods2

1Source: Kolda, Lewis, and Torczon 2003
2Source: Larson, Menickelly, and Wild 2019

4/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Direct Search based on sufficient decrease

Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

5/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.

for k = 0, 1, . . . do
Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

5/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

5/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.

(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

5/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)

Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

5/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)

if f(xk + αkdk) < f(xk)− cα2
k then

Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

5/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then

Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

5/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else

Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

5/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

5/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Probabilistic Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn randomly.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

5/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Probabilistic Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn randomly.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)

5/30

Probabilistic Direct Search (PDS): a simplified framework

Algorithm 1: Probabilistic Direct Search based on sufficient decrease
Input: x0 ∈ Rn, α0 ∈ (0,∞), 0 < θ < 1 < γ.
for k = 0, 1, . . . do

Select a finite set of directions Dk ⊂ Rn randomly.
(In this talk, assume Dk is a set of unit vectors for simplicity)
Set dk = argmin{f(xk + αkd) : d ∈ Dk}. (complete polling)
if f(xk + αkdk) < f(xk)− cα2

k then
Set xk+1 = xk + αkdk and αk+1 = γαk .
(Move and expand step size)

else
Set xk+1 = xk and αk+1 = θαk .
(Stay and shrink step size)

Typical choice of {Dk} (Gratton, Royer, Vicente, and Zhang 2015):

Dk = {d1, . . . , dm} with dℓ
i.i.d.∼ U(Sn−1)

N.B.: typical choice in the deterministic case is {±ei}ni=1, Coordinate Search (CS)
5/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

x∗

x0

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

x0

d1

α0

d2

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

6/30

Illustration of how PDS works

Dk = {d1, d2}, where dℓ
i.i.d.∼ U(S1)

6/30

A numerical example: CS v.s. PDS with 2 directions

Rosenbrock “banana” function:

f(x) =

n−1∑
i=1

[
(1− xi)

2 + 100(xi+1 − x2
i)

2
]

x
y

f

x

y

7/30

A numerical example: CS v.s. PDS with 2 directions

20 40 60 80 100 120 140 160 180 200

Number of funciton evaluations

10
-1

10
0

10
1

10
2

F
u
n
c
ti
o
n
 v

a
lu

e
s

CS

PDS

n = 2

0 1000 2000 3000 4000 5000

Number of funciton evaluations

10
1

10
2

10
3

10
4

10
5

F
u

n
c
ti
o

n
 v

a
lu

e
s

CS

PDS

n = 50

Function value v.s. number of function evaluations

Worst case complexity of function evaluations (GRVZ 2015)
O(n2ϵ−2) for CS while O(nϵ−2) for PDS

8/30

Cosine measure

Definition (Cosine measure w.r.t. a vector)
Given a finite set D ⊆ Rn\{0} and a vector v ∈ Rn\{0}, define

cm(D, v) = max
d∈D

d⊤v

∥d∥∥v∥
,

which is the cosine measure of D with respect to v.

Example

cm(D, v) = cos θ
d1

d2

d3

d4

v
θ

cm(D, v) measures the ability of D to “approximate” v

9/30

Cosine measure

Definition (Cosine measure w.r.t. a vector)
Given a finite set D ⊆ Rn\{0} and a vector v ∈ Rn\{0}, define

cm(D, v) = max
d∈D

d⊤v

∥d∥∥v∥
,

which is the cosine measure of D with respect to v.

Example

cm(D, v) = cos θ
d1

d2

d3

d4

v
θ

cm(D, v) measures the ability of D to “approximate” v
9/30

Convergence theory

Definition (p-probabilistically κ-descent)
{Dk} is said to be p-probabilistically κ-descent, if

P (cm(Dk,−gk) ≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0,

where gk = ∇f(xk).

Intuition
Each Dk is “good enough” with probability at least p

no matter what has happened in the history

Theorem (GRVZ, 2015)
If {Dk} is p0-probabilistically κ-descent with κ > 0 and

p0 =
log θ

log(γ−1θ)
,

then PDS converges w.p.1 when f is L-smooth and lower-bounded.

10/30

Convergence theory

Definition (p-probabilistically κ-descent)
{Dk} is said to be p-probabilistically κ-descent, if

P (cm(Dk,−gk) ≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0,

where gk = ∇f(xk).

Intuition
Each Dk is “good enough” with probability at least p

no matter what has happened in the history

Theorem (GRVZ, 2015)
If {Dk} is p0-probabilistically κ-descent with κ > 0 and

p0 =
log θ

log(γ−1θ)
,

then PDS converges w.p.1 when f is L-smooth and lower-bounded.
10/30

Practical choice and natural question

Corollary (GRVZ, 2015)

If Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1), then PDS converges w.p.1 if

m > log2

(
1− log θ

log γ

)
.

A natural question: what if

m ≤ log2

(
1− log θ

log γ

)
?

Moreover, are supermartingale-like assumptions essential?

P(some event | F) ≥ p

Related talks: Coralia, Kwassi Joseph, Matt, Anne, Warren, Sara, Lindon

11/30

Practical choice and natural question

Corollary (GRVZ, 2015)

If Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1), then PDS converges w.p.1 if

m > log2

(
1− log θ

log γ

)
.

A natural question: what if

m ≤ log2

(
1− log θ

log γ

)
?

Moreover, are supermartingale-like assumptions essential?

P(some event | F) ≥ p

Related talks: Coralia, Kwassi Joseph, Matt, Anne, Warren, Sara, Lindon

11/30

Practical choice and natural question

Corollary (GRVZ, 2015)

If Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1), then PDS converges w.p.1 if

m > log2

(
1− log θ

log γ

)
.

A natural question: what if

m ≤ log2

(
1− log θ

log γ

)
?

Moreover, are supermartingale-like assumptions essential?

P(some event | F) ≥ p

Related talks: Coralia, Kwassi Joseph, Matt, Anne, Warren, Sara, Lindon

11/30

A simple test

• Objective function: f(x) = ∥x∥2/2
• Initial point: x0 = (−10, 0)T

• Stopping criterion: αk ≤ machine epsilon
• Number of experiments: 100, 000
• Parameters of PDS: α0 = 1, θ = 0.25, γ = 1.5, m = 2

m = 2 < 2.143 ≈ log2

(
1− log θ

log γ

)

12/30

A simple test (Cont’d)

Note: each black dot represents the output point of one run of PDS.
13/30

Non-convergence study is not rare

Many well-known algorithms have non-convergence examples

• Powell, On search directions for minimization algorithms, 1973.

• Yuan, An example of non-convergence of trust region algorithms, 1998.

• Reddi, Kale, and Kumar, On the convergence of Adam and beyond, 2018.

• Chen, He, Ye, and Yuan, The direct extension of ADMM for multi-block convex
minimization problems is not necessarily convergent, 2016.

• Dai, A perfect example for the BFGS method, 2013.

• Mascarenhas, The divergence of the BFGS and Gauss Newton methods, 2014.

Instead of finding a non-convergence example,
can we develop a theorem?

14/30

Non-convergence study is not rare

Many well-known algorithms have non-convergence examples

• Powell, On search directions for minimization algorithms, 1973.

• Yuan, An example of non-convergence of trust region algorithms, 1998.

• Reddi, Kale, and Kumar, On the convergence of Adam and beyond, 2018.

• Chen, He, Ye, and Yuan, The direct extension of ADMM for multi-block convex
minimization problems is not necessarily convergent, 2016.

• Dai, A perfect example for the BFGS method, 2013.

• Mascarenhas, The divergence of the BFGS and Gauss Newton methods, 2014.

Instead of finding a non-convergence example,
can we develop a theorem?

14/30

An overview of our theory

We assume that f is smooth and convex (explained later).

We denote the optimal solution set of f by S∗.

We will establish the following.
Under some assumption on {Dk} and algorithmic parameters, there
exist choices of x0 such that

P
(
lim inf
k→∞

dist(xk,S∗) > 0

)
> 0.

Differences from a non-convergence example

one function v.s. some function class
special parameters v.s. conditions for parameters

a specific initial point v.s. a region for initial points

15/30

Assumption on {Dk}: probabilistic ascent

Recall p-probabilistically κ-descent

P (cm (Dk,−gk)≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0.

q-probabilistically ascent

P (cm (Dk,−gk)≤ 0 | D0, . . . ,Dk−1) ≥ q for each k ≥ 0.

Note
If cm (Dk,−gk) ≤ 0, then Dk is “bad” (no descent direction).

16/30

Assumption on {Dk}: probabilistic ascent

Recall p-probabilistically κ-descent

P (cm (Dk,−gk)≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0.

q-probabilistically ascent

P (cm (Dk,−gk)≤ 0 | D0, . . . ,Dk−1) ≥ q for each k ≥ 0.

Note
If cm (Dk,−gk) ≤ 0, then Dk is “bad” (no descent direction).

16/30

Assumption on {Dk}: probabilistic ascent

Recall p-probabilistically κ-descent

P (cm (Dk,−gk)≥ κ | D0, . . . ,Dk−1) ≥ p for each k ≥ 0.

q-probabilistically ascent

P (cm (Dk,−gk)≤ 0 | D0, . . . ,Dk−1) ≥ q for each k ≥ 0.

Note
If cm (Dk,−gk) ≤ 0, then Dk is “bad” (no descent direction).

16/30

Why assuming convexity?

cm (Dk,−gk) ≤ 0 No descent direction

f(xk + αkd) ≥ f(xk) ∀d ∈ Dkαk shrinks

f convex

• Convexity connects cm (Dk,−gk) ≤ 0 and shrinking of step size
• {Dk} is probabilistic ascent implies αk “often” shrinks

17/30

Why assuming convexity?

cm (Dk,−gk) ≤ 0 No descent direction

f(xk + αkd) ≥ f(xk) ∀d ∈ Dkαk shrinks

f convex

• Convexity connects cm (Dk,−gk) ≤ 0 and shrinking of step size

• {Dk} is probabilistic ascent implies αk “often” shrinks

17/30

Why assuming convexity?

cm (Dk,−gk) ≤ 0 No descent direction

f(xk + αkd) ≥ f(xk) ∀d ∈ Dkαk shrinks

f convex

• Convexity connects cm (Dk,−gk) ≤ 0 and shrinking of step size
• {Dk} is probabilistic ascent implies αk “often” shrinks

17/30

From probabilistic ascent to non-convergence: How?

{Dk} is probabilistically ascent

αk “often” shrinks

P
(∞∑

k=0

αk is “bounded”
)

> 0 ?

P (non-convergence) > 0 if dist(x0,S∗) is “large”?

18/30

From probabilistic ascent to non-convergence: How?

{Dk} is probabilistically ascent

αk “often” shrinks

P
(∞∑

k=0

αk is “bounded”
)

> 0 ?

P (non-convergence) > 0 if dist(x0,S∗) is “large”?

18/30

From probabilistic ascent to non-convergence: How?

{Dk} is probabilistically ascent

αk “often” shrinks

P
(∞∑

k=0

αk is “bounded”
)

> 0 ?

P (non-convergence) > 0 if dist(x0,S∗) is “large”?

18/30

From probabilistic ascent to non-convergence: How?

{Dk} is probabilistically ascent

αk “often” shrinks

P
(∞∑

k=0

αk is “bounded”
)

> 0 ?

P (non-convergence) > 0 if dist(x0,S∗) is “large”?

18/30

Key ingredients of the analysis

• Define the indicator function for “bad Dk”

Yk = 1(cm (Dk,−gk) ≤ 0)

• Note the following inequality between step sizes (f is convex)

αk+1 ≤

{
γαk, if Yk = 0

θαk, if Yk = 1
= γ1−YkθYkαk

• Use the above inequality iteratively

αk ≤ α0

k−1∏
ℓ=0

γ1−YℓθYℓ

• Get an upper bound of series of step sizes
∞∑
k=1

αk ≤ α0

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ =: α0S

• Analyze the behavior of the random series S

19/30

Key ingredients of the analysis

• Define the indicator function for “bad Dk”

Yk = 1(cm (Dk,−gk) ≤ 0)

• Note the following inequality between step sizes (f is convex)

αk+1 ≤

{
γαk, if Yk = 0

θαk, if Yk = 1
= γ1−YkθYkαk

• Use the above inequality iteratively

αk ≤ α0

k−1∏
ℓ=0

γ1−YℓθYℓ

• Get an upper bound of series of step sizes
∞∑
k=1

αk ≤ α0

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ =: α0S

• Analyze the behavior of the random series S

19/30

Key ingredients of the analysis

• Define the indicator function for “bad Dk”

Yk = 1(cm (Dk,−gk) ≤ 0)

• Note the following inequality between step sizes (f is convex)

αk+1 ≤

{
γαk, if Yk = 0

θαk, if Yk = 1
= γ1−YkθYkαk

• Use the above inequality iteratively

αk ≤ α0

k−1∏
ℓ=0

γ1−YℓθYℓ

• Get an upper bound of series of step sizes
∞∑
k=1

αk ≤ α0

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ =: α0S

• Analyze the behavior of the random series S

19/30

Key ingredients of the analysis

• Define the indicator function for “bad Dk”

Yk = 1(cm (Dk,−gk) ≤ 0)

• Note the following inequality between step sizes (f is convex)

αk+1 ≤

{
γαk, if Yk = 0

θαk, if Yk = 1
= γ1−YkθYkαk

• Use the above inequality iteratively

αk ≤ α0

k−1∏
ℓ=0

γ1−YℓθYℓ

• Get an upper bound of series of step sizes
∞∑
k=1

αk ≤ α0

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ =: α0S

• Analyze the behavior of the random series S

19/30

A closer look at the random series S

Recall that

S =

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ ,

where Yℓ = 1(cm (Dℓ,−gℓ) ≤ 0).

Two questions

• (Q1) Does there exist a constant ζ such that

P (S < ζ) > 0?

• (Q2) Moreover, can we specify the value of ζ?

20/30

A closer look at the random series S

Recall that

S =

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ ,

where Yℓ = 1(cm (Dℓ,−gℓ) ≤ 0).

Two questions

• (Q1) Does there exist a constant ζ such that

P (S < ζ) > 0?

• (Q2) Moreover, can we specify the value of ζ?

20/30

Answer to Q1 and Q2

Proposition
If {Dk} is q-probabilistically ascent with q > q0, where

q0 = 1− p0 =
log γ

log(θ−1γ)
,

then
1.

P (S < ∞) = 1,

2.
P (S < ζ) > 0 ⇐⇒ ζ >

θ

1− θ
.

Note

• P(S < ∞) = 1 implies the existence of a ζ but not its value.

• The lower bound in 2 is tight, as S =
∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ ≥ θ

1− θ
.

21/30

Answer to Q1 and Q2

Proposition
If {Dk} is q-probabilistically ascent with q > q0, where

q0 = 1− p0 =
log γ

log(θ−1γ)
,

then
1.

P (S < ∞) = 1,

2.
P (S < ζ) > 0 ⇐⇒ ζ >

θ

1− θ
.

Note

• P(S < ∞) = 1 implies the existence of a ζ but not its value.

• The lower bound in 2 is tight, as S =
∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ ≥ θ

1− θ
.

21/30

Non-convergence of PDS

Theorem
Under aforementioned assumptions on f , if the sequence {Dk} in PDS
is q-probabilistically ascent with q > q0, then

P
(
lim inf
k→∞

dist(xk,S∗) > 0

)
> 0,

provided that dist(x0,S∗) > α0/(1− θ).

22/30

Weaker assumption than probabilistic ascent

Denote P(cm(Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) by Pk .

Recall that {Dk} is q-probabilistically ascent if Pk ≥ q for each k ≥ 0.

Note that {Pk} are random variables.

What we need is

not P(S < ∞) = 1 but P(S < ∞) > 0.

For the latter, we can relax the assumption

from Pk ≥ q > q0 to P
(
lim inf
k→∞

Pk > q0

)
> 0.

23/30

Weaker assumption than probabilistic ascent

Denote P(cm(Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) by Pk .

Recall that {Dk} is q-probabilistically ascent if Pk ≥ q for each k ≥ 0.

Note that {Pk} are random variables.

What we need is

not P(S < ∞) = 1 but P(S < ∞) > 0.

For the latter, we can relax the assumption

from Pk ≥ q > q0 to P
(
lim inf
k→∞

Pk > q0

)
> 0.

23/30

Weaker assumption than probabilistic ascent

Denote P(cm(Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) by Pk .

Recall that {Dk} is q-probabilistically ascent if Pk ≥ q for each k ≥ 0.

Note that {Pk} are random variables.

What we need is

not P(S < ∞) = 1 but P(S < ∞) > 0.

For the latter, we can relax the assumption

from Pk ≥ q > q0 to P
(
lim inf
k→∞

Pk > q0

)
> 0.

23/30

What happens in the typical implementation of PDS?

Let Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1).

Recall that PDS is convergent if

m > log2

(
1− log θ

log γ

)
.

With our non-convergence analysis, PDS is non-convergent if

P (cm (Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) > q0,

which is equivalent to (
1

2

)m

>
log γ

log(θ−1γ)
,

or, equivalently,
m < log2

(
1− log θ

log γ

)
.

Assumptions for convergence and non-convergence are essential.

24/30

What happens in the typical implementation of PDS?

Let Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1).

Recall that PDS is convergent if

m > log2

(
1− log θ

log γ

)
.

With our non-convergence analysis, PDS is non-convergent if

P (cm (Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) > q0,

which is equivalent to (
1

2

)m

>
log γ

log(θ−1γ)
,

or, equivalently,
m < log2

(
1− log θ

log γ

)
.

Assumptions for convergence and non-convergence are essential.

24/30

What happens in the typical implementation of PDS?

Let Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1).

Recall that PDS is convergent if

m > log2

(
1− log θ

log γ

)
.

With our non-convergence analysis, PDS is non-convergent if

P (cm (Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) > q0,

which is equivalent to (
1

2

)m

>
log γ

log(θ−1γ)
,

or, equivalently,
m < log2

(
1− log θ

log γ

)
.

Assumptions for convergence and non-convergence are essential.

24/30

What happens in the typical implementation of PDS?

Let Dk = {d1, . . . , dm}, where dℓ
i.i.d.∼ U(Sn−1).

Recall that PDS is convergent if

m > log2

(
1− log θ

log γ

)
.

With our non-convergence analysis, PDS is non-convergent if

P (cm (Dk,−gk) ≤ 0 | D0, . . . ,Dk−1) > q0,

which is equivalent to (
1

2

)m

>
log γ

log(θ−1γ)
,

or, equivalently,
m < log2

(
1− log θ

log γ

)
.

Assumptions for convergence and non-convergence are essential.

24/30

Tightness of our assumption on {Dk}

Our assumption on {Dk}:

q-probabilistically ascent with q > q0.

Natural question:

Is it sufficient to require q ≥ q0?

Answer: NO!

Example
We assume

• θ = 1/2 and γ = 2, which implies q0 = 1/2;
• Dk = {gk/∥gk∥} or {−gk/∥gk∥} with probability 1/2, respectively.

Then PDS converges w.p.1.

25/30

Tightness of our assumption on {Dk}

Our assumption on {Dk}:

q-probabilistically ascent with q > q0.

Natural question:

Is it sufficient to require q ≥ q0?

Answer: NO!

Example
We assume

• θ = 1/2 and γ = 2, which implies q0 = 1/2;
• Dk = {gk/∥gk∥} or {−gk/∥gk∥} with probability 1/2, respectively.

Then PDS converges w.p.1.

25/30

Tightness of our assumption on {Dk}

Our assumption on {Dk}:

q-probabilistically ascent with q > q0.

Natural question:

Is it sufficient to require q ≥ q0?

Answer: NO!

Example
We assume

• θ = 1/2 and γ = 2, which implies q0 = 1/2;
• Dk = {gk/∥gk∥} or {−gk/∥gk∥} with probability 1/2, respectively.

Then PDS converges w.p.1.

25/30

Convergence result inspired by non-convergence analysis

Define a series

S(κ) =

∞∑
k=1

k−1∏
ℓ=0

γZℓ(κ)θ1−Zℓ(κ),

where Zℓ(κ) = 1(cm (Dℓ,−gℓ) ≥ κ).

Roughly speaking, P(S(0) < ∞) > 0 implies non-convergence of PDS.

Theorem
If there exists a κ > 0 such that S(κ) = ∞, then DS converges.

Relation with existing result (GRVZ, 2015)

p0-probabilistically κ-descent =⇒ S(κ) = ∞ w.p.1

26/30

Convergence result inspired by non-convergence analysis

Define a series

S(κ) =

∞∑
k=1

k−1∏
ℓ=0

γZℓ(κ)θ1−Zℓ(κ),

where Zℓ(κ) = 1(cm (Dℓ,−gℓ) ≥ κ).

Roughly speaking, P(S(0) < ∞) > 0 implies non-convergence of PDS.

Theorem
If there exists a κ > 0 such that S(κ) = ∞, then DS converges.

Relation with existing result (GRVZ, 2015)

p0-probabilistically κ-descent =⇒ S(κ) = ∞ w.p.1

26/30

Convergence result inspired by non-convergence analysis

Define a series

S(κ) =

∞∑
k=1

k−1∏
ℓ=0

γZℓ(κ)θ1−Zℓ(κ),

where Zℓ(κ) = 1(cm (Dℓ,−gℓ) ≥ κ).

Roughly speaking, P(S(0) < ∞) > 0 implies non-convergence of PDS.

Theorem
If there exists a κ > 0 such that S(κ) = ∞, then DS converges.

Relation with existing result (GRVZ, 2015)

p0-probabilistically κ-descent =⇒ S(κ) = ∞ w.p.1

26/30

Convergence result inspired by non-convergence analysis

Define a series

S(κ) =

∞∑
k=1

k−1∏
ℓ=0

γZℓ(κ)θ1−Zℓ(κ),

where Zℓ(κ) = 1(cm (Dℓ,−gℓ) ≥ κ).

Roughly speaking, P(S(0) < ∞) > 0 implies non-convergence of PDS.

Theorem
If there exists a κ > 0 such that S(κ) = ∞, then DS converges.

Relation with existing result (GRVZ, 2015)

p0-probabilistically κ-descent =⇒ S(κ) = ∞ w.p.1

26/30

Take away

In this talk, we

• theoretically explain the non-convergence phenomenon of PDS,
• find out the behavior of PDS is closely related to the random series

S =

∞∑
k=1

k−1∏
ℓ=0

γ1−YℓθYℓ .

Non-convergence analysis can

• verify whether your assumption for convergence is essential,
• deepen our understanding of mathematical tools we use,
• provide new perspectives on convergence analysis,
• guide the choice of algorithmic parameters,

27/30

One more thing: OptiProfiler

OptiProfiler (joint work with Tom M. Ragonneau and Zaikun Zhang) is

a benchmarking platform for DFO solvers.

Our goal: fair, convenient, and uniform benchmarking.

• Creating performance profiles, data profiles, and log-ratio profiles.
[Moré, Wild, 2009; Shi, Xuan, Oztoprak, and Nocedal, 2023]
Thanks for Nikolaus’s nice talk: runtime distributions and COCO!

• Providing multiple types of tests
noisy function, unrelaxable constraints, randomized initial point…

• Implemented in Python and MATLAB

28/30

One more thing: OptiProfiler

Just one line MATLAB code:

benchmark({@bds, @fminsearch}, "noisy")
Pro-les with the \noisy" feature

H
is
to
ry
-b
as
ed

p
ro
-
le
s

1 2 4 16 32 64

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
1
)

1 2 8 16 64 128

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
2
)

1 2 8 16 64 128

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
3
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
4
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
5
)

1 2 8 16 64 128

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
6
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
7
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
8
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
o
l
=

10
!
9
)

1 4 8 32 64 256

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

a
n
ce

p
ro
-
le
s
(t
ol

=
10
!
1
0
)

0 1 7 15 63 127

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
1
)

0 3 7 31 63 255

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
2
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
3
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
4
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
5
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
6
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
7
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
8
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
9
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
1
0
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
1
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
2
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
3
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
4
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
5
)

fminsearch

BDS

Problem

-6

-4

-2

0

2

4

6

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
6
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
7
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
8
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
9
)

fminsearch

BDS

Problem
-8

-6

-4

-2

0

2

4

6

8

L
o
g-
ra
ti
o
p
ro
-
le

(t
ol

=
10
!
10
)

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

O
u
tp
u
t-
b
as
ed

p
ro
-
le
s

1 2 4 8 16 32

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
1
)

1 2 4 8 16

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
2
)

1 2 4 8 16

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
3
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
4
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
5
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
6
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
7
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
8
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
1
0
!
9
)

1 2 4 8

Performance ratio

0

0.2

0.4

0.6

0.8

1

P
er
fo
rm

an
ce

p
ro
-
le
s
(t
ol

=
10
!
10
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
1
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
2
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
3
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
4
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
5
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
6
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
7
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
8
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
o
l
=

10
!
9
)

0 3 15 31 127 511

Number of simplex gradients

0

0.2

0.4

0.6

0.8

1

D
at
a
p
ro
-
le
s
(t
ol

=
10
!
10
)

fminsearch

BDS

Problem
-5

-4

-3

-2

-1

0

1

2

3

4

5

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
1
)

fminsearch

BDS

Problem

-4

-3

-2

-1

0

1

2

3

4

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
2
)

fminsearch

BDS

Problem

-4

-3

-2

-1

0

1

2

3

4

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
3
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
4
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
5
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
6
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
7
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
8
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
10
!
9
)

fminsearch

BDS

Problem

-3

-2

-1

0

1

2

3

L
og
-r
a
ti
o
p
ro
-
le

(t
ol

=
1
0!

10
)

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

fminsearch
BDS

GitHub repository: https://github.com/optiprofiler
29/30

https://github.com/optiprofiler

Acknowledgement

• Thanks to the organizers!
• Thanks to all the speakers!
• Thanks Giampaolo and Geovani for saving my life!
• Thanks Zaikun for giving me this great opportunity!

Grazie mille!

Photo taken by Lindon.
30/30

References I

▶ Chen, C. et al. (2016). “The direct extension of ADMM for multi-block
convex minimization problems is not necessarily convergent”. Math.
Program. 155, pp. 57–79.

▶ Conn, A. R., Scheinberg, K., and Vicente, L. N. (2009). Introduction to
Derivative-Free Optimization. Vol. 8. MOS-SIAM Ser. Optim.
Philadelphia: SIAM.

▶ Durrett, R. (2010). Probability: Theory and Examples. Fourth. Camb. Ser.
Stat. Probab. Math. Cambridge: Cambridge University Press.

▶ Fermi, E. and Metropolis, N. (1952). Numerical solution of a minimum
problem. Tech. rep. Alamos National Laboratory, Los Alamos, USA.

References II

▶ Ghanbari, H. and Scheinberg, K. (2017). “Black-box optimization in
machine learning with trust region based derivative free algorithm”.
arXiv:1703.06925.

▶ Gratton, S. et al. (2015). “Direct search based on probabilistic descent”.
SIAM J. Optim. 25, pp. 1515–1541.

▶ Kolda, T. G., Lewis, R. M., and Torczon, V. (2003). “Optimization by direct
search: New perspectives on some classical and modern methods”.
SIAM Rev. 45, pp. 385–482.

▶ Larson, J., Menickelly, M., and Wild, S. M. (2019). “Derivative-free
optimization methods”. Acta Numer. 28, pp. 287–404.

▶ Mascarenhas, W. (2014). “The divergence of the BFGS and Gauss Newton
methods”. Math. Program. 147, pp. 253–276.

References III

▶ Powell, M. J. D. (1973). “On search directions for minimization
algorithms”. Math. Program. 4, pp. 193–201.

▶ Yuan, Y. (1998). “An example of non-convergence of trust region
algorithms”. In: Advances in Nonlinear Programming. Ed. by Y. Yuan.
Dordrecht: Kluwer Academic Publishers, pp. 205–215.

	Tightness of analysis
	Appendix

