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Abstract

Derivative-free trust-region and direct-search methods are two popular classes

of derivative-free optimization algorithms. In this paper, we propose a unified

perspective for their convergence analysis. Specifically, we show that the behavior of

an algorithm-determined series governs asymptotic convergence, thereby generalizing

existing results in both deterministic and randomized settings. Although our analysis

of direct-search methods requires complete polling, we provide a counterexample

showing that this requirement is essential for our convergence result.

Keywords: Derivative-free optimization, Trust region, Direct search, Sufficient de-

crease, Convergence analysis

1 Introduction

We consider the unconstrained optimization problem

min
x∈Rn

f(x), (1.1) eq:unconstrained

where f : Rn → R is continuously differentiable. When gradient information for f in (1.1)

is unavailable, derivative-free optimization (DFO) provides a powerful alternative [1, 7, 15].

DFO methods generally fall into two categories: model-based methods and direct-search

methods.
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In model-based methods, especially trust-region methods [5, 6, 7], one constructs

a local (usually quadratic) model of the objective function within a trust region via

interpolation or regression of function values, and updates the iterate by approximately

minimizing this model. In contrast, direct-search methods [1, 7, 14] do not build such

models. Instead, they explore the search space by evaluating the objective function along

a finite set of directions and update the iterate based on comparisons of function values.

In this paper, we focus on direct-search methods equipped with the “sufficient decrease”

globalization strategy [9, 16]. Moreover, randomization techniques have been introduced

in both categories; see [2, 3, 4, 12] for trust-region methods and [11] for direct-search

methods.

Despite these algorithmic differences, natural questions arise: Is there a unified theo-

retical framework to analyze the convergence of these two classes of methods? Can we

characterize their convergence behavior through a common condition?

In this paper, we provide an affirmative answer to these questions as a first step toward

such a framework. We focus on a simplified first-order DFO trust-region method and a

direct-search method based on sufficient decrease and complete polling. We show that

the asymptotic convergence of these methods can be characterized by the behavior of an

algorithm-determined series

H =
∞∑
k=0

k−1∏
ℓ=0

γyℓθ1−yℓ , (1.2) ?eq:series_intro?

where γ ∈ [1,∞) and θ ∈ (0, 1) are algorithmic parameters for step-size updates, and {yk}
is a sequence of algorithm-determined indicators of whether the iteration is “good” (e.g.,

the model is sufficiently accurate or the direction set is well poised). In particular, we

show that if the series H diverges, then the iterates generated by the algorithm admit a

subsequence along which the gradients converge to zero.

Characterizing convergence via the behavior of a series is not new in optimization

theory. For example, the well-known Zoutendijk condition [17, 18, 19]

∞∑
k=0

(∇f(xk)
Tdk)

2/∥dk∥2 < ∞

is central to the analysis of line-search methods. Similarly, for conjugate gradient methods,

Dai et al. [8] proved a convergence result of the form

∞∑
k=0

∥∇f(xk)∥4/∥dk∥2 = ∞.

Our result echoes these classical theories by establishing a unified series condition for DFO

methods.
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The rest of the paper is organized as follows. In Section 2, we present the unified

convergence theory based on the series condition. In Section 3, we apply this theory to

a derivative-free trust-region method under both deterministic and randomized settings.

In Section 4, we extend the analysis to direct-search methods with sufficient decrease

and complete polling. A counterexample is provided in Subsection 4.3 to illustrate the

necessity of complete polling for our convergence result. Finally, we discuss connections to

the non-convergence results in [13] and open questions in Section 5, and we conclude in

Section 6.

2 Unified series-based convergence theory

⟨sec:series⟩This section presents a simple abstract framework that captures the step-size mecha-

nisms shared by trust-region and direct-search methods. We then identify an algorithm-

determined series whose divergence guarantees first-order convergence.

2.1 Deterministic framework

Algorithm 2.1 Deterministic general framework with adaptive step sizes
⟨alg:general-framework⟩ Select x0 ∈ Rn, θ ∈ (0, 1), γ ∈ [1,∞), and α0 > 0.

For k = 0, 1, 2, . . . , do the following.

1. Generate a step sk(αk) ∈ Rn using a local model mk : Rn → R deterministically.

2. If sk(αk) satisfies a sufficient decrease condition, set xk+1 = xk + sk(αk);

otherwise, set xk+1 = xk.

3. If mk satisfies a quality condition, set αk+1 = γαk;

otherwise, set αk+1 = θαk.

To distinguish iterations with “reliable” local information from those with “unreliable”

local information, we introduce a binary sequence {yk}. Intuitively, yk = 1 indicates that

the local model mk : Rn → R (or, in a direct-search setting, the local direction set) is

sufficiently good for the current step size, whereas yk = 0 indicates the opposite. The

precise definition of yk depends on the algorithmic instance (e.g., fully linear models in

trust-region methods, or a positive cosine measure in direct-search methods). We specify

these choices in Sections 3 and 4, respectively. We assume that yk ∈ {0, 1} is determined

by the local model mk at iteration k.

The following assumption summarizes the key property we require of a good iteration.
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⟨ass:yk_ass⟩
Assumption 2.1. Consider Algorithm 2.1. For every ε > 0, there exists a constant ᾱ > 0

(possibly depending on ε) such that, for each k ≥ 0, if yk = 1, ∥∇f(xk)∥ ≥ ε, and αk ≤ ᾱ,

then

• the sufficient decrease condition and the quality condition are satisfied, so that

xk+1 = xk + sk(αk) and αk+1 = γαk;

• the objective value decreases by at least ζ∥∇f(xk)∥αk, i.e.,

f(xk)− f(xk+1) ≥ ζ∥∇f(xk)∥αk,

for some constant ζ > 0 independent of k and ε.

We also require that the step size converges to zero.

⟨ass:step_to_zero⟩
Assumption 2.2. For Algorithm 2.1, the step size αk → 0 as k → ∞.

Finally, we impose standard smoothness and boundedness assumptions on the objective

function for the remainder of the paper.

⟨ass:function⟩
Assumption 2.3. The objective function f is bounded from below and continuously

differentiable in Rn. The gradient ∇f is Lipschitz continuous in Rn with Lipschitz constant

L.

We now define the central series associated with the step-size update rule in Algo-

rithm 2.1.

H =
∞∑
k=0

k−1∏
ℓ=0

γyℓθ1−yℓ . (2.1) eq:series

The next theorem shows that divergence of this series forces first-order stationarity

along a subsequence.

⟨thm:convergence⟩
Theorem 2.1. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, and 2.3, if the

series H defined in (2.1) diverges, i.e., H = ∞, then

lim inf
k→∞

∥∇f(xk)∥ = 0.

Proof. We prove the result by contradiction. Let ζ > 0 be the constant in Assumption 2.1.

Suppose that lim infk ∥∇f(xk)∥ > 0. Then, since αk → 0 by Assumption 2.2, there exist

an integer K ≥ 0 and constants ε > 0 and ᾱ > 0 such that, for each k ≥ K,

∥∇f(xk)∥ ≥ ε and αk ≤ ᾱ,
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where ᾱ is the positive constant in Assumption 2.1. Then, for each k ≥ K, if yk = 1, the

sufficient decrease condition and the quality condition are both satisfied by Assumption 2.1,

so the iterate is updated and the step size is expanded. Thus, for each k ≥ k′ ≥ K, we

obtain the following lower bound on the step size

αk ≥ αk′−1

k−1∏
ℓ=k′

γyℓθ1−yℓ . (2.2) eq:lower_bound_alpha

Define k∗ = inf{k ≥ K : yk = 1}, I0 = {k ≥ k∗ : yk = 0}, and I1 = {k ≥ k∗ : yk = 1}.
Since H = ∞, we have k∗ < ∞ and card(I1) = ∞. Suppose i1 and i2 are two consecutive

indices in I1 with i1 < i2. Then we have

∑
k∈I0,

i1≤k<i2

k−1∏
ℓ=k∗

γyℓθ1−yℓ ≤ γ

1− θ

i1−1∏
ℓ=k∗

γyℓθ1−yℓ ,

meaning that the sum of the terms in I0 between two consecutive terms in I1 is bounded

by a multiple of the earlier term, due to the convergence of the geometric series
∑∞

k=0 θ
k.

By summing the above inequality over all pairs of consecutive indices in I1, we obtain

∑
k∈I0

k−1∏
ℓ=k∗

γyℓθ1−yℓ ≤ γ

1− θ

∑
k∈I1

k−1∏
ℓ=k∗

γyℓθ1−yℓ ,

which implies
∞∑

k=k∗

k−1∏
ℓ=k∗

γyℓθ1−yℓ ≤ 1 + γ − θ

1− θ

∑
k∈I1

k−1∏
ℓ=k∗

γyℓθ1−yℓ . (2.3) eq:bound_I0_by_I1

Let f ∗ be a lower bound of f . Then, by Assumption 2.1,

f0 − f ∗ ≥
∑
k∈I1

[f(xk)− f(xk+1)] ≥ ζε
∑
k∈I1

αk.

By applying the lower bound of αk in (2.2) and the inequality in (2.3), we have

f0 − f ∗ ≥ ζε αk∗−1

∑
k∈I1

k−1∏
ℓ=k∗

γyℓθ1−yℓ

≥ ζε αk∗−1
1− θ

1 + γ − θ

∞∑
k=k∗

k−1∏
ℓ=k∗

γyℓθ1−yℓ .

(2.4) eq:final_contradiction

Since H = ∞, the series on the right-hand side of (2.4) diverges, contradicting the

assumption that f is bounded below.
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We obtain the following corollary from Theorem 2.1.

⟨cor:convergence_deterministic⟩
Corollary 2.1. Consider Algorithm 2.1. Under Assumptions 2.3, 2.1, and 2.2, if yk = 1

for each k ≥ 0, then

lim inf
k→∞

∥∇f(xk)∥ = 0.

Proof. If yk = 1 for each k ≥ 0, then
∏k−1

ℓ=0 γ
yℓθ1−yℓ = γk, so H =

∑∞
k=0 γ

k diverges

because γ ≥ 1. The conclusion follows from Theorem 2.1.

2.2 Probabilistic framework

We next consider a randomized version of Algorithm 2.1, in which the local model (and

hence the step) is generated randomly.

Algorithm 2.2 Probabilistic general framework with adaptive step sizes
⟨alg:probabilistic-general-framework⟩

Identical to Algorithm 2.1 except that the local model and the step in Step 1 are generated

randomly.

For clarity, we summarize the notation for the random elements and their realizations

in Table 1.

Table 1: Notation for random elements and their realizations

⟨tab:notation_general⟩
Local model Step Iterate Step size Indicator Series

Random element Mk Sk Xk Ak Yk H

Realization mk sk xk αk yk H

We define the filtration {Fk}, where for each k ≥ 0,

Fk = σ(M0, A0, X1, . . . ,Mk, Ak, Xk+1), (2.5) eq:sigma-algebra

which is the σ-algebra generated by M0, A0, X1, . . . , Mk, Ak, and Xk+1. In addition, we

define

F−1 = {∅,Ω}.
⟨def:probabilistic_model⟩

Definition 2.1. Consider Algorithm 2.2. The sequence of random models {Mk} is said

to be p-probabilistically “good” if

P(Yk = 1 | Fk−1) ≥ p. (2.6) ?eq:probabilistic_model?
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⟨thm:martingale_bounded_increment⟩
Lemma 2.1 ([10, Theorem 5.3.1]). Let {Wk} be a martingale with |Wk+1−Wk| ≤ M < ∞.

Let
C = { lim

k→∞
Wk exists and is finite},

D = {lim sup
k→∞

Wk = +∞ and lim inf
k→∞

Wk = −∞}.

Then we have

P (C ∪D) = 1.

⟨lem:series_infinite_probabilistic⟩
Lemma 2.2. Consider Algorithm 2.2. If the sequence of random models {Mk} is p0-

probabilistically “good” with

p0 =
log θ

log(γ−1θ)
, (2.7) ?eq:def_p0?

then we have

P (H = ∞) = 1.

Proof. For each k ≥ 0, we define

Zk =
k−1∑
ℓ=0

[Yℓ log γ + (1− Yℓ) log θ] .

Then

H =
∞∑
k=1

exp (Zk) .

To prove H = ∞ a.s., it suffices to show that lim supk Zk > −∞ a.s.. By Definition 2.1

and the definition of p0, the sequence {Zk} is a submartingale. By Doob’s decomposition

theorem ([10, Theorem 5.2.10]), {Zk} admits the unique decomposition Zk = Wk + Pk,

where {Wk} is a martingale and {Pk} is a predictable increasing process with P0 = 0. Since

|Zk+1 − Zk| ≤ max{log γ,− log θ} < ∞, both {Wk} and {Pk} have bounded increments

(see the formulae for Wk and Pk in [10, Theorem 5.2.10]). Applying Lemma 2.1 yields

lim supk Zk > −∞ a.s., which completes the proof.

⟨cor:convergence_probabilistic⟩
Corollary 2.2. Consider Algorithm 2.2. Under Assumptions 2.3, 2.1, and 2.2, if the

sequence of random models {Mk} is p0-probabilistically “good” with

p0 =
log θ

log(γ−1θ)
,

then we have

P
(
lim inf
k→∞

∥∇f(Xk)∥ = 0
)

= 1.

Proof. It suffices to prove H = ∞ when {Mk} is p0-probabilistically “good”, which is

guaranteed by Lemma 2.2.
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3 Derivative-free trust region

⟨sec:trust-region⟩We begin with a simplified derivative-free trust-region method and explain how its con-

vergence fits into the abstract framework of Section 2. The method alternates between

computing a trial step from a local model, accepting the step when sufficient decrease is

observed, and updating the trust-region radius based on a model-quality criterion.

Algorithm 3.1 A simplified first-order derivative-free trust-region method
⟨alg:trust-region⟩ Select η1, η2 > 0, x0 ∈ Rn, δ0 ∈ (0,∞), θ ∈ (0, 1), γ ∈ [1,∞). For k = 0, 1, 2, . . . , do the

following.

1. Build a quadratic model mk(s) of f and compute sk by approximately minimizing mk

in B(xk, δk) so that sk satisfies (3.1).

2. Compute the ratio

ϱk =
f(xk)− f(xk + sk)

mk(0)−mk(sk)
.

3. If ϱk ≥ η1, set xk+1 = xk + sk; otherwise, set xk+1 = xk.

4. If ϱk ≥ η1 and ∥gk∥ ≥ η2δk, set δk+1 = γδk; otherwise, set δk+1 = θδk.

3.1 Basic definitions, assumptions, and existing results

Throughout this section, mk denotes a C1 surrogate model of f on the trust region B(xk, δk).

To quantify model quality in a scale-sensitive yet dimension-free way, we use the standard

notion of fully linear models.

?⟨def:fully-linear⟩?
Definition 3.1. Let f be a C1 function. A C1 model m is said to be (κeg, κef)-fully linear

for f on B(x, δ) if, for all s ∈ B(0, δ),

|m(s)− f(x+ s)| ≤ κefδ
2,

∥∇m(s)−∇f(x+ s)∥ ≤ κegδ.

At iteration k of Algorithm 3.1, we consider a quadratic surrogate model

mk(s) = f(xk) + gTk s+
1

2
sTBks, s ∈ B(0, δk),

where gk ∈ Rn and Bk ∈ Rn×n approximate ∇f(xk) and ∇2f(xk), respectively. The follow-

ing assumptions are standard in the trust-region literature and will be used throughout.

⟨ass:bounded-hessian⟩
Assumption 3.1. There exists a positive constant Bmax such that ∥Bk∥ ≤ Bmax for all

k ≥ 0.
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⟨ass:fractional-CD⟩
Assumption 3.2. There exists a constant m ∈ (0, 1] such that, for all k ≥ 0, we can

compute a step sk satisfying the fractional Cauchy decrease condition

mk(0)−mk(sk) ≥ m

2
∥gk∥min{∥gk∥/∥Bk∥, δk}, (3.1) eq:fcd

where by convention ∥gk∥/∥Bk∥ = ∞ if ∥Bk∥ = 0.

We first recall classical global convergence results for Algorithm 3.1, which will later

appear as corollaries of our series-based analysis.

⟨thm:deterministic-trust-region⟩
Theorem 3.1 ([7, Theorem 10.12]). Consider Algorithm 3.1. Under Assumptions 2.3, 3.1,

and 3.2, suppose there exist constants κeg > 0 and κef > 0 such that mk is (κeg, κef)-fully

linear for every k ≥ 0. Then

lim inf
k→∞

∥∇f(xk)∥ = 0.

We next consider a randomized variant of Algorithm 3.1, in which the model construc-

tion in Step 1 is randomized.

Algorithm 3.2 Probabilistic first-order derivative-free trust-region
?⟨alg:probabilistic-trust-region⟩?

Identical to Algorithm 3.1 except that the surrogate model in Step 1 is generated randomly.

?⟨def:p-k_fully-linear⟩?
Definition 3.2 ([2, Definition 3.2]). Consider Algorithm 3.1 with f being continuously

differentiable. The sequence of surrogate models {Mk} is said to be p-probabilistically

(κeg, κef)-fully linear if it satisfies

P (Mk is (κeg, κef)-fully linear | Fk−1) ≥ p for each k ≥ 0,

where Fk−1 is defined in (2.5).

⟨thm:probabilistic-trust-region⟩
Theorem 3.2 ([2, Theorem 4.2]). Consider Algorithm 3.1. Under Assumptions 2.3, 3.1,

and 3.2, if {Mk} is p0-probabilistically (κeg, κef)-fully linear with p0 = log θ/ log(γ−1θ)

and κeg and κef being positive constants, then we have

P
(
lim inf
k→∞

∥∇f(Xk)∥ = 0
)

= 1.
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3.2 Convergence analysis based on the series

We now connect Algorithm 3.1 to the abstract framework of Section 2. Fix constants

κeg > 0 and κef > 0, and define the indicator

yk(κeg, κef) = 1
(
mk is (κeg, κef)-fully linear on B(xk, δk)

)
. (3.2) eq:yk_tr

When yk = 1 and δk is sufficiently small relative to ∥∇f(xk)∥, the trust-region mechanism

ensures acceptance of the trial step and expansion of the radius. Our goal is to verify

Assumption 2.1 and then invoke Theorem 2.1.

⟨lemma:trust-region-successful⟩
Lemma 3.1 ([12, Lemma 2.7]). Consider Algorithm 3.1 and fix constants κeg > 0

and κef > 0. Under Assumptions 2.3, 3.1, and 3.2, if yk(κeg, κef) = 1 and δk ≤ c1∥∇f(xk)∥
with

c1 =

(
κeg +max

{
η2, Bmax,

4κef

m(1− η1)

})−1

, (3.3) ?eq:def_c1?

then xk+1 = xk + sk and δk+1 = γδk, meaning that both the sufficient decrease condition

and the quality condition are satisfied.

?⟨lem:sufficient_decrease_tr⟩?
Lemma 3.2. Consider Algorithm 3.1 and fix constants κeg > 0 and κef > 0. Under

Assumptions 2.3, 3.1, and 3.2, if yk(κeg, κef) = 1 and δk ≤ c2∥∇f(xk)∥ with

c2 =

(
2κeg +max

{
η2, Bmax,

4κef

m(1− η1)

})−1

, (3.4) eq:def_c2

then we have

f(xk)− f(xk+1) ≥ mη1
4

∥∇f(xk)∥δk.

Proof. By Lemma 3.1, we have

f(xk)− f(xk+1) ≥ η1(mk(0)−mk(sk))

≥ mη1
2

∥gk∥min{∥gk∥/∥Bk∥, δk},

where the last inequality is due to Assumption 3.2. Since δk ≤ c2∥∇f(xk)∥, we have

δk ≤ ∥∇f(xk)∥/(Bmax + κeg), which implies ∥gk∥/∥Bk∥ ≥ δk. Thus, we have

f(xk)− f(xk+1) ≥ mη1
2

∥gk∥δk ≥ mη1
2

(∥∇f(xk)∥ − κegδk)δk,

where the last inequality is due to the definition of yk(κeg, κef). We complete the proof by

noting that

∥∇f(xk)∥ − κegδk ≥ 1

2
∥∇f(xk)∥

due to the definition of c2.
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We next make the connection to Algorithm 2.1 explicit. In Algorithm 3.1, we set

αk = δk and view a successful trust-region iteration as a “good” iteration in the sense of

Section 2. More precisely, Algorithm 3.1 can be regarded as an instance of Algorithm 2.1

via the following identifications.

• The step is defined as sk(αk) = sk with αk = δk.

• The local model is the trust-region model mk.

• The sufficient decrease condition is

f(xk)− f(xk + sk) ≥ η1
(
mk(0)−mk(sk)

)
.

• The quality condition is

f(xk)− f(xk + sk) ≥ η1
(
mk(0)−mk(sk)

)
and ∥gk∥ ≥ η2δk.

With the above identifications, Assumptions 2.2 and 2.1 are verified by the following

lemmas.

The next lemma records the standard fact that the trust-region radius converges to

zero.

?⟨lem:step_to_zero_tr⟩?
Lemma 3.3. Consider Algorithm 3.1. Under Assumptions 2.3, 3.1, and 3.2, for any

realization, we have δk → 0 as k → ∞.

The next lemma shows that, on good iterations with sufficiently small δk, the method

achieves a decrease proportional to ∥∇f(xk)∥δk.
?⟨lem:local_strategy_tr⟩?

Lemma 3.4. Consider Algorithm 3.1. Under Assumptions 2.3, 3.1, and 3.2, for any

κeg > 0 and κef > 0, the definition of yk(κeg, κef) satisfies Assumption 2.1 with ᾱ = c2ε

and ζ = mη1/4, where c2 is defined in (3.4).

We can now state the series-based convergence result for the trust-region method.

⟨thm:convergence_trust_region⟩
Theorem 3.3. Consider Algorithm 3.1 and the configuration of {yk} as (3.2). Under

Assumptions 2.3, 3.1, and 3.2, if there exist constants κeg > 0 and κef > 0 such that H = ∞,

then we have

lim inf
k→∞

∥∇f(xk)∥ = 0.

Theorems 3.1 and 3.2 follow from Theorem 3.3 combined with Corollaries 2.1 and 2.2,

respectively.
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4 Direct search based on sufficient decrease

⟨sec:direct-search⟩We next consider a simplified direct-search method based on the sufficient decrease

condition. The presentation emphasizes the adaptive step-size update and prepares for

the connection with the series-based framework in Section 2.

Algorithm 4.1 A simplified direct-search method with sufficient decrease
⟨alg:direct-search⟩ Select x0 ∈ Rn, α0 > 0, θ ∈ (0, 1), γ ∈ [1,∞), and a forcing function ρ : (0,∞) → (0,∞).

For k = 0, 1, 2, . . . , do the following.

1. Generate a set of nonzero vectors Dk ⊂ Rn.

2. Check whether there exists a d ∈ Dk such that

f(xk)− f(xk + αkd) > ρ(αk). (4.1) eq:sufficient_decrease

3. If d exists, set xk+1 = xk + αkd, αk+1 = γαk; otherwise, set xk+1 = xk, αk+1 = θαk.

4.1 Basic definitions, assumptions, and existing results

In Algorithm 4.1, a function ρ : (0,∞) → (0,∞) is called a forcing function if it is

nondecreasing and satisfies ρ(α) = o(α) as α → 0+. The inequality (4.1) is the sufficient

decrease condition.

Convergence analysis for variants of Algorithm 4.1 can be found in [9, 11, 14, 16]. We

briefly recall the key geometric notion needed in these results.

⟨def:cosine_measure⟩
Definition 4.1 (Cosine measure). Let D be a finite set of nonzero vectors in Rn. The

cosine measure of D with respect to a nonzero vector v, denoted by cm(D, v), is defined as

cm(D, v) = max
d∈D

dTv

∥d∥∥v∥
.

The cosine measure of D, denoted by cm(D), is defined by

cm(D) = min
v∈Rn\{0}

cm(D, v).

We impose the following standard normalization on the direction sets.

⟨ass:unit_length⟩
Assumption 4.1. For each k ≥ 0, the direction set Dk is a finite set of unit vectors in

Rn.
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Remark 4.1. Assumption 4.1 can be replaced by assuming uniform lower and upper

bounds on the lengths of vectors in all direction sets. Without loss of generality, we

normalize all directions to unit length.

With these assumptions in place, global convergence for deterministic direction sets

follows from classical analysis.

⟨thm:deterministic_ds⟩
Theorem 4.1 ([14, Theorem 3.11]). Consider Algorithm 4.1. Under Assumptions 2.3 and

4.1, if there exists a constant κ > 0 such that cm(Dk) ≥ κ for each k ≥ 0, then we have

lim inf
k→∞

∥∇f(xk)∥ = 0.

We also consider a randomized variant, in which the direction set is generated randomly.

Algorithm 4.2 Probabilistic direct search
⟨alg:probabilistic-direct-search⟩

Identical to Algorithm 4.1 except that the direction set in Step 1 is generated randomly.

We denote the random direction set by Dk, with realization Dk. The convergence

analysis of Algorithm 4.2 relies on the notion of “p-probabilistically κ-descent”.

?⟨def:p-k_descent⟩?
Definition 4.2 ([11, Definition 3.1]). Consider Algorithm 4.2 with f being differentiable.

The direction set sequence {Dk} is said to be p-probabilistically κ-descent if it satisfies

P
(
cm (Dk,−∇f(Xk)) ≥ κ | FD

k−1

)
≥ p for each k ≥ 0,

where FD
k−1 = σ(D0, . . . ,Dk−1) and FD

−1 is the trivial σ-algebra.

Using this notion, [11] established the global convergence of Algorithm 4.1 under

random direction sets.
⟨thm:probabilistic_ds⟩

Theorem 4.2 ([11, Theorem 3.4]). Consider Algorithm 4.1. Under Assumptions 2.3

and 4.1, if {Dk} is p-probabilistically κ-descent with p = log θ/ log(γ−1θ) and a positive

constant κ, then we have

P
(
lim inf
k→∞

∥∇f(Xk)∥ = 0
)

= 1.

4.2 Convergence analysis based on the series

⟨subsec:ds_series⟩We now connect Algorithm 4.1 to the abstract framework of Section 2. Fix κ > 0, and

define the indicator

yk(κ) = 1
(
cm(Dk,−∇f(xk)) ≥ κ

)
. (4.2) eq:yk_ds

Intuitively, yk(κ) = 1 means that Dk contains a direction making an angle uniformly

bounded away from π/2 with the steepest-descent direction.
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⟨lemma:linear_decreasing⟩
Lemma 4.1. Consider Algorithm 4.1 and fix a constant κ > 0. Under Assumptions 2.3

and 4.1, if yk(κ) = 1 and αk ≤ κ∥∇f(xk)∥/L, then we have

max
d∈Dk

{f(xk)− f(xk + αkd)} ≥ κ

2
∥∇f(xk)∥αk.

Proof. By Definition 4.1, when yk(κ) = 1, there exists d∗k ∈ Dk such that

−∇f(xk)
Td∗k ≥ κ∥∇f(xk)∥∥d∗k∥ = κ∥∇f(xk)∥,

where the last equality comes from Assumption 4.1. Then we have

max
d∈Dk

{f(xk)− f(xk + αkd)} ≥ f(xk)− f(xk + αkd
∗
k)

≥ −∇f(xk)
Td∗kαk −

L

2
α2
k

≥ κ∥∇f(xk)∥αk −
L

2
α2
k,

where the second inequality is due to the Lipschitz continuity of ∇f by Assumption 2.3.

The result follows from the fact that κ∥∇f(xk)∥αk − Lα2
k/2 ≥ κ∥∇f(xk)∥αk/2 when

αk ≤ κ∥∇f(xk)∥/L.

For the series-based argument below, we also impose a complete polling rule: whenever

an iterate is updated, the best trial point among all polling directions is selected.

⟨ass:complete_polling⟩
Assumption 4.2. Consider Algorithm 4.1. If xk+1 ̸= xk, then we have

f(xk+1) = min
d∈Dk

f(xk + αkd).

We next make the connection to Algorithm 2.1 explicit. Algorithm 4.1 can be viewed

as an instance of Algorithm 2.1 via the following choices.

• The step is defined as sk(αk) = αkdk with

dk = argmin
d∈Dk

f(xk + αkd).

• The local model is defined as

mk(s) =

f(xk + αks), if s ∈ Dk ∪ {0},

∞, otherwise.

14



• The sufficient decrease condition and the quality condition are defined as

f(xk)− f(xk + sk(αk)) ≥ ρ(αk).

With the above identifications, Assumptions 2.2 and 2.1 are verified by the following

lemmas.

⟨lem:stepsize_to_0⟩
Lemma 4.2 ([14, Theorem 3.4]). Consider Algorithm 4.1. Under Assumption 2.3, we

have αk → 0.

?⟨lem:local_strategy_ds⟩?
Lemma 4.3. Consider Algorithm 4.1. Under Assumptions 2.3, 4.1, and 4.2, for any κ > 0,

the definition of yk(κ) satisfies Assumption 2.1 with some ᾱ depending on ρ and ε

and ζ = κ/2.

Proof. By Lemma 4.1, it remains to show that, for every ε > 0, there is a con-

stant ᾱ ∈ (0, κ/L] such that, if yk(κ) = 1, ∥∇f(xk)∥ ≥ ε, and αk ≤ ᾱ, then

max
d∈Dk

{f(xk)− f(xk + αkd)} ≥ κ

2
∥∇f(xk)∥αk ≥ κε

2
αk ≥ ρ(αk), (4.3) eq:ds_satisfy_ass

where the first inequality comes from Lemma 4.1 and ᾱ ≤ κ/L. The existence of ᾱ fulfilling

the last inequality in (4.3) comes from the fact that ρ(α) = o(α).

We can now state the main convergence result for direct search.

⟨thm:convergence_series_ds⟩
Theorem 4.3. Consider Algorithm 4.1 and the configuration of {yk} as (4.2). Under

Assumptions 2.3, 4.1, and 4.2, if there exists a constant κ > 0 such that H(κ) = ∞, then

lim inf
k→∞

∥∇f(xk)∥ = 0.

Theorems 4.1 and 4.2 follow from Theorem 4.3 combined with Corollaries 2.1 and 2.2,

respectively.

4.3 Necessity of the complete polling assumption

⟨subsec:counterexample⟩We now show by a counterexample that the complete polling assumption (Assump-

tion 4.2) cannot be dropped from Theorem 4.3. Specifically, we construct an instance

of Algorithm 4.1 without complete polling for which H(κ) = ∞ for some κ > 0, yet

lim infk ∥∇f(xk)∥ > 0.

The construction exploits the contrast between the divergence of the harmonic series∑∞
k=1 1/k = ∞ and the convergence of the sum of squared reciprocals

∑∞
k=1 1/k

2 = π2/6.
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Setup

Consider the quadratic objective f(x) = 1
2
xTx on R2, so that ∇f(x) = x and the unique

minimizer is the origin. Define a decreasing sequence of radii

rℓ = 1 +
π2

6
−

ℓ∑
i=1

1

i2
, ℓ ≥ 1, (4.4) ?eq:def_radii?

together with r0 = 1 + π2/6 and r∞ = limℓ→∞ rℓ = 1. These radii define a family of

concentric circles centered at the origin, with

rℓ−1 − rℓ =
1

ℓ2
, ℓ ≥ 1. (4.5) ?eq:gap_radii?

We set the algorithmic parameters to γ = 1/θ = 2 and the forcing function to ρ(α) = 1
2
α2.

Construction of the sequences

We now define the sequences {xk}, {αk}, {Dk}, and an auxiliary index sequence {ℓk} that

records which circle the current iterate lies on. Set x0 = (r0, 0), α0 = 1, and ℓ0 = 0, with

the convention 1/0 = ∞. For each k ≥ 0, define

Dk =


{
− xk

∥xk∥

}
∪
{
d ∈ R2 : ∥d∥ = 1, ∥xk + αkd∥ = rℓk+1

}
if αk ≤ 1

ℓk
,{

xk

∥xk∥

}
if αk >

1
ℓk
,

(4.6) eq:def_Dk

ℓk+1 =

ℓk + 1 if αk ≤ 1
ℓk
,

ℓk if αk >
1
ℓk
,

(4.7) ?eq:def_ellk?

xk+1 =

xk + αkdk, where dk ∈ Dk satisfies ∥xk + αkdk∥ = rℓk+1
if αk ≤ 1

ℓk
,

xk if αk >
1
ℓk
,

(4.8) eq:def_xk

αk+1 =

2αk if αk ≤ 1
ℓk
,

1
2
αk if αk >

1
ℓk
.

(4.9) eq:def_alphak

?⟨rem:incomplete_polling⟩?Remark 4.2 (Role of incomplete polling). The key mechanism of this counterexample is

the choice of xk+1 in (4.8) when αk ≤ 1/ℓk. In this case, the direction set Dk contains two

directions: the steepest-descent direction −xk/∥xk∥ and a nearly tangential direction dk

satisfying ∥xk + αkdk∥ = rℓk+1. Among these, the steepest-descent direction produces a

larger decrease in f because it moves xk toward the origin:

f(xk)− f(xk − αkxk/∥xk∥) > f(xk)− f(xk + αkdk).
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0

rℓrℓ+1

r∞

xk

xk+1

−xk/∥xk∥

dk

Figure 1: Illustration of the counterexample when αk ≤ 1/ℓk. The direction set Dk

contains two directions (red arrows): the steepest-descent direction −xk/∥xk∥ and a nearly

tangential direction dk that moves xk to the next inner circle. The algorithm selects dk

and sets xk+1 = xk + αkdk on the circle of radius rℓ+1, instead of using −xk/∥xk∥, which
would yield a larger decrease in f . This is precisely where complete polling is violated.

?⟨fig:counterexample_illustrate⟩?

However, our construction deliberately selects the direction dk that moves the iterate

to the next inner circle while avoiding the steepest-descent direction. Under complete

polling (Assumption 4.2), the algorithm would be required to choose the direction that

minimizes f , namely −xk/∥xk∥, and the resulting decrease in f would be much larger.

It is this “wasteful” choice of direction — permitted only when complete polling is not

enforced — that allows the total decrease in f to remain finite even though the series H

diverges.

Validity of the construction

We first verify that the above sequences form a valid realization of Algorithm 4.1 (without

complete polling).

?⟨lem:counterexample_valid⟩?
Lemma 4.4. The sequences {xk}, {αk}, and {Dk} defined in (4.6)–(4.9) form a valid

realization of Algorithm 4.1 with the parameters γ = 2, θ = 1/2, ρ(α) = 1
2
α2, and

f(x) = 1
2
xTx. In particular, the direction sets consist of unit vectors, and the step-size

update rule in (4.9) agrees with Step 3 of Algorithm 4.1 for all k with ℓk ≥ 3.

Proof. We verify each step of Algorithm 4.1.
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Step 1 (Direction set). By construction, Dk in (4.6) is a finite set of unit vectors for

each k ≥ 0, satisfying Assumption 4.1.

Step 2 (Sufficient decrease check). We need to show that the step-size update rule

matches the sufficient decrease condition (4.1). Consider the case αk ≤ 1/ℓk with ℓk ≥ 3.

In this case, xk+1 = xk + αkdk with ∥xk+1∥ = rℓk+1, and

f(xk)− f(xk+1) =
1

2

(
r2ℓk − r2ℓk+1

)
=

1

2
(rℓk + rℓk+1)(rℓk − rℓk+1)

> rℓk − rℓk+1 =
1

(ℓk + 1)2
≥ 1

2
α2
k = ρ(αk),

(4.10) ?eq:counterexample_decrease?

where the first inequality uses rℓk + rℓk+1 > 2 (since both radii exceed 1) and the second

inequality holds because αk ≤ 1/ℓk and ℓk ≥ 3 imply 1
2
α2
k ≤ 1

2ℓ2k
≤ 1

(ℓk+1)2
. Hence the

direction dk ∈ Dk achieves sufficient decrease, so Step 3 of Algorithm 4.1 expands the step

size: αk+1 = γαk = 2αk, consistent with (4.9).

Consider now the case αk > 1/ℓk with ℓk ≥ 3. Here Dk = {xk/∥xk∥}, and the

only trial point is xk + αkxk/∥xk∥, which has ∥xk + αkxk/∥xk∥∥ = rℓk + αk > rℓk , so

f(xk + αkxk/∥xk∥) > f(xk). No direction achieves sufficient decrease, so xk+1 = xk and

αk+1 = θαk = αk/2, again consistent with (4.9).

Step 3 (Iterate and step-size update). By the above analysis, the iterate update

in (4.8) and the step-size update in (4.9) agree with Step 3 of Algorithm 4.1 for all k with

ℓk ≥ 3. For the finitely many initial iterations with ℓk < 3, the sequences can be checked

directly.

Divergence of the series

We now show that H(κ) = ∞ for κ = 1/2.

⟨lem:counterexample_H_diverges⟩
Lemma 4.5. For the sequences defined in (4.6)–(4.9) with κ = 1/2 and yk(κ) defined as

in (4.2), we have H(1/2) = ∞.

Proof. We first determine yk(1/2). When αk ≤ 1/ℓk, the direction −xk/∥xk∥ belongs to

Dk, and cm(Dk,−∇f(xk)) = cm(Dk,−xk) = 1 ≥ 1/2, so yk(1/2) = 1. When αk > 1/ℓk,

we have Dk = {xk/∥xk∥}, so cm(Dk,−xk) = −1 < 1/2 and hence yk(1/2) = 0. Therefore,

for ℓk ≥ 3, the indicator yk(1/2) = 1 if and only if αk ≤ 1/ℓk, and the step-size update

satisfies αk+1 = γyk(1/2)θ1−yk(1/2)αk. Consequently, there exists a constant c > 0 such that

H(1/2) = c
∞∑
k=1

αk. (4.11) eq:H_equals_c_sum

We claim that αk ≥ 1/(2ℓk) for each k ≥ 1. The base case holds since α1 = 2 ≥ 1/2 = 1/(2ℓ1)

(as ℓ1 = 1). For the inductive step, suppose αn ≥ 1/(2ℓn). We consider two cases.
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• If αn > 1/ℓn, then ℓn+1 = ℓn and αn+1 = αn/2 > 1/(2ℓn) = 1/(2ℓn+1).

• If αn ≤ 1/ℓn, then ℓn+1 = ℓn + 1 and αn+1 = 2αn ≥ 1/ℓn ≥ 1/(2ℓn+1).

In both cases αn+1 ≥ 1/(2ℓn+1), completing the induction. Since αk → 0 by Lemma 4.2,

we deduce ℓk → ∞. Moreover, each value ℓ ≥ 1 is attained by ℓk for at least one index k

(because ℓk increases by at most 1 at each step), so

∞∑
k=1

αk ≥
∞∑
k=1

1

2ℓk
≥ 1

2

∞∑
ℓ=1

1

ℓ
= ∞.

Together with (4.11), this gives H(1/2) = ∞.

Non-convergence of the iterates

?⟨lem:counterexample_nonconvergence⟩?Lemma 4.6. For the sequences defined in (4.6)–(4.9), we have limk→∞ ∥∇f(xk)∥ = 1. In

particular, lim infk→∞ ∥∇f(xk)∥ = 1 ̸= 0.

Proof. By construction, ∥xk∥ = rℓk for each k ≥ 0. Since ℓk → ∞ (as shown in the proof

of Lemma 4.5), we have ∥∇f(xk)∥ = ∥xk∥ = rℓk → r∞ = 1 > 0.

5 Relation to the non-convergence result and open questions

⟨sec:remarks⟩Recall that, in Section 4.2, for direct search with sufficient decrease and complete polling,

we defined the indicator

yk(κ) = 1
(
cm(Dk,−∇f(xk)) ≥ κ

)
for a fixed κ > 0, and the series

H(κ) =
∞∑
k=0

k−1∏
ℓ=0

γyℓ(κ)θ1−yℓ(κ).

Theorem 4.3 shows that first-order convergence of direct search follows once there ex-

ists κ > 0 such that H(κ) = ∞.

In contrast, the paper [13] studies the opposite question: under what conditions can

(probabilistic) direct search fail to converge? There, the indicator is defined as

zk = 1
(
cm(Dk,−∇f(xk)) > 0

)
.
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Based on {zk}, they define another series

Ĥ =
∞∑
k=0

zk

k−1∏
ℓ=0

γzℓθ1−zℓ . (5.1) ?eq:hat_H?

Assuming that f is smooth and convex, [13] shows that when Ĥ < ∞, direct search with

sufficient decrease can fail to converge (without requiring complete polling).

To compare these series, define

H̃(κ) =
∞∑
k=0

yk(κ)
k−1∏
ℓ=0

γyℓ(κ)θ1−yℓ(κ).

Then we always have H(κ) ≥ H̃(κ). Moreover, since yk(κ) = 1 implies zk = 1 for

any κ > 0, we have H̃(κ) ≥ Ĥ for any κ > 0. Hence, the convergence condition H(κ) = ∞
in Theorem 4.3 is (in general) stronger than requiring Ĥ = ∞, while the non-convergence

regime Ĥ < ∞ studied in [13] does not contradict our result.

Several questions remain open. First, for direct search, the borderline case κ = 0 in the

definition of yk(κ) is not covered by our analysis. Second, although Subsection 4.3 shows

that complete polling is necessary for our deterministic series-based convergence result, it

is unclear whether complete polling is also essential in the probabilistic setting. Third, it

would be interesting to develop an analogous non-convergence theory for derivative-free

trust-region methods, complementing the series-based convergence results in Section 3.

Fourth, we only study a simplified DFO trust-region framework. In contrast, the classical

derivative-free trust-region algorithm (see, e.g., Algorithm 10.1 in [7]) includes a criticality

step that explicitly addresses the regime of small model gradients by reducing the trust-

region radius to be commensurate with the model gradient. It would be interesting to

understand whether this classical mechanism implies our series assumption automatically,

i.e., whether it necessarily generates sufficiently many fully linear models so that H = ∞.

6 Conclusion

⟨sec:conclusion⟩We proposed a unified series-based perspective for the convergence analysis of derivative-

free trust-region and direct-search methods. In particular, we identified an algorithm-

determined series of the form

H =
∞∑
k=0

k−1∏
ℓ=0

γyℓθ1−yℓ ,
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and showed that its divergence provides a simple sufficient condition for first-order conver-

gence, namely lim infk ∥∇f(xk)∥ = 0.

We illustrated this framework by recovering convergence guarantees for a simplified

derivative-free trust-region method (including the deterministic and probabilistic settings)

and by establishing a parallel series condition for direct search based on sufficient decrease.

For direct search, our analysis requires complete polling; we also provided a counterexample

(Subsection 4.3) showing that complete polling cannot be removed from our series-based

convergence theorem in general.

Finally, we discussed the connection between our convergence condition and the

complementary non-convergence analysis in [13], highlighting how different series conditions

reflect different algorithmic regimes. Together, these results suggest that series conditions

offer a useful lens for understanding both convergence and potential failure modes of

randomized and deterministic derivative-free methods.
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