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Abstract

Derivative-free trust-region and direct-search methods are two popular classes
of derivative-free optimization algorithms. In this paper, we propose a unified
perspective for their convergence analysis. Specifically, we show that the behavior of
an algorithm-determined series governs asymptotic convergence, thereby generalizing
existing results in both deterministic and randomized settings. Although our analysis
of direct-search methods requires complete polling, we provide a counterexample

showing that this requirement is essential for our convergence result.

Keywords: Derivative-free optimization, Trust region, Direct search, Sufficient de-

crease, Convergence analysis

1 Introduction

We consider the unconstrained optimization problem

min f(ac), (1.1) ‘ eq:unconstrain
r€eR™

where f : R™ — R is continuously differentiable. When gradient information for f in (1.1)
is unavailable, derivative-free optimization (DFO) provides a powerful alternative [1, 7, 15].
DFO methods generally fall into two categories: model-based methods and direct-search

methods.
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In model-based methods, especially trust-region methods [5, 6, 7], one constructs
a local (usually quadratic) model of the objective function within a trust region via
interpolation or regression of function values, and updates the iterate by approximately
minimizing this model. In contrast, direct-search methods [1, 7, 14] do not build such
models. Instead, they explore the search space by evaluating the objective function along
a finite set of directions and update the iterate based on comparisons of function values.
In this paper, we focus on direct-search methods equipped with the “sufficient decrease”
globalization strategy [9, 16]. Moreover, randomization techniques have been introduced
in both categories; see [2, 3, 4, 12] for trust-region methods and [11] for direct-search
methods.

Despite these algorithmic differences, natural questions arise: Is there a unified theo-
retical framework to analyze the convergence of these two classes of methods? Can we
characterize their convergence behavior through a common condition?

In this paper, we provide an affirmative answer to these questions as a first step toward
such a framework. We focus on a simplified first-order DFO trust-region method and a
direct-search method based on sufficient decrease and complete polling. We show that
the asymptotic convergence of these methods can be characterized by the behavior of an

algorithm-determined series
oo k-1

H =3 [ (1.2) 7eq:series_inta

k=0 ¢=0
where v € [1,00) and 6 € (0, 1) are algorithmic parameters for step-size updates, and {y;}
is a sequence of algorithm-determined indicators of whether the iteration is “good” (e.g.,
the model is sufficiently accurate or the direction set is well poised). In particular, we
show that if the series H diverges, then the iterates generated by the algorithm admit a
subsequence along which the gradients converge to zero.

Characterizing convergence via the behavior of a series is not new in optimization

theory. For example, the well-known Zoutendijk condition [17, 18, 19]

[e. 9]

STV @) Tde)?/ldil? < o

k=0
is central to the analysis of line-search methods. Similarly, for conjugate gradient methods,

Dai et al. [8] proved a convergence result of the form

SVl del? = oo
k=0

Our result echoes these classical theories by establishing a unified series condition for DFO
methods.



The rest of the paper is organized as follows. In Section 2, we present the unified
convergence theory based on the series condition. In Section 3, we apply this theory to
a derivative-free trust-region method under both deterministic and randomized settings.
In Section 4, we extend the analysis to direct-search methods with sufficient decrease
and complete polling. A counterexample is provided in Subsection 4.3 to illustrate the
necessity of complete polling for our convergence result. Finally, we discuss connections to
the non-convergence results in [13] and open questions in Section 5, and we conclude in

Section 6.

2 Unified series-based convergence theory

(sec:series) Thig section presents a simple abstract framework that captures the step-size mecha-
nisms shared by trust-region and direct-search methods. We then identify an algorithm-

determined series whose divergence guarantees first-order convergence.

2.1 Deterministic framework

Algorithm 2.1 Deterministic general framework with adaptive step sizes
Select o € R™, 6 € (0,1), v € [1,00), and g > 0.
For £ =0,1,2,..., do the following.

1. Generate a step si(ay) € R™ using a local model my, : R™ — R deterministically.

1-framework)

2. If sgp(ay) satisfies a sufficient decrease condition, set xp11 = z) + s(ay);
otherwise, set zp,1 = xi.
3. If my, satisfies a quality condition, set a1 = yay;

otherwise, set a1 = fay.

To distinguish iterations with “reliable” local information from those with “unreliable”

local information, we introduce a binary sequence {y;}. Intuitively, y, = 1 indicates that
the local model my : R™ — R (or, in a direct-search setting, the local direction set) is
sufficiently good for the current step size, whereas y, = 0 indicates the opposite. The
precise definition of y; depends on the algorithmic instance (e.g., fully linear models in
trust-region methods, or a positive cosine measure in direct-search methods). We specify
these choices in Sections 3 and 4, respectively. We assume that y, € {0,1} is determined
by the local model my at iteration k.

The following assumption summarizes the key property we require of a good iteration.



1yk . . . . _
(ass:yk_ass) Assumption 2.1. Consider Algorithm 2.1. For every e > 0, there exists a constant & > 0

(possibly depending on €) such that, for each k>0, if yp = 1, ||V f(xx)|| > €, and oy < @,
then

e the sufficient decrease condition and the quality condition are satisfied, so that

Tpy1 = T + sp(or)  and gy = You;

e the objective value decreases by at least ||V f(zg)|| o, i.e.,

flae) = flaesa) = CIV S (@)l o,
for some constant ( > 0 independent of k and €.

We also require that the step size converges to zero.
tep-to_zero) Assumption 2.2. For Algorithm 2.1, the step size ap — 0 as k — oo.
Finally, we impose standard smoothness and boundedness assumptions on the objective
function for the remainder of the paper.

. f i . . . . . .
ss:function) Assumption 2.3. The objective function f is bounded from below and continuously

differentiable in R™. The gradient V f is Lipschitz continuous in R™ with Lipschitz constant

L.
We now define the central series associated with the step-size update rule in Algo-
rithm 2.1.
oo k—1
o=y e (2.1) ogseries
k=0 (=0

The next theorem shows that divergence of this series forces first-order stationarity
along a subsequence.

convergence)

Theorem 2.1. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, and 2.3, if the
series H defined in (2.1) diverges, i.e., H = oo, then

liminf ||V f(x)|| = 0.

k—o0

Proof. We prove the result by contradiction. Let ¢ > 0 be the constant in Assumption 2.1.
Suppose that liminfy, ||V f(zg)|| > 0. Then, since oy, — 0 by Assumption 2.2, there exist
an integer K > 0 and constants € > 0 and & > 0 such that, for each k£ > K,

IVf(zr)| > e and o < a,



where & is the positive constant in Assumption 2.1. Then, for each k > K, if y, = 1, the
sufficient decrease condition and the quality condition are both satisfied by Assumption 2.1,
so the iterate is updated and the step size is expanded. Thus, for each &k > k' > K, we
obtain the following lower bound on the step size

k—1

o > Qg H ,yyegl—yz. (2.2)‘eq:lower_bound
=K'

Define k* =inf{k > K : yp, = 1}, Iy = {k > k* : yp, = 0}, and 7, = {k > k* : y, = 1}.
Since H = oo, we have k* < oo and card(Z;) = oo. Suppose i; and iy are two consecutive

indices in Z; with 4; < i5. Then we have

i1—1

T Yegl-ye < v Yel—ye
>, Iwor < — [

k€Zoy, (=k* l=k*
i1 <k<ig

meaning that the sum of the terms in Z; between two consecutive terms in Z; is bounded
by a multiple of the earlier term, due to the convergence of the geometric series > p-, 6

By summing the above inequality over all pairs of consecutive indices in Z;, we obtain

Z ]ﬁ ,yyzgl—ye < I’YTQ Z ]ﬁ Vyzgl—yz’

k€T l=k* k€T t=k*

which implies

o k-1

1 0
S I < =123 H e, (2.3) [eqrbound _T0_by
k=k* £=k* keI, e=k*

Let f* be a lower bound of f. Then, by Assumption 2.1,

fo=F = D @) = flanp)] > Ce > an

k€ly k€lh

By applying the lower bound of oy in (2.2) and the inequality in (2.3), we have

k-1
fo—[f" > Ceag— Z H yYegtY

keI, b=k* (24) ‘ eq:final_contr
1—¢ oo k—1
> Ceope g —— — Z H ,szel Ye
k=k* {=k*

Since H = oo, the series on the right-hand side of (2.4) diverges, contradicting the
assumption that f is bounded below. O



We obtain the following corollary from Theorem 2.1.

terministic)

Corollary 2.1. Consider Algorithm 2.1. Under Assumptions 2.3, 2.1, and 2.2, if y, = 1
for each k > 0, then
liminf ||V f(x)|| = 0.
k—o0

Proof. If y, = 1 for each k£ > 0, then le;ol egtve = Ak so H = 3727 4% diverges

because v > 1. The conclusion follows from Theorem 2.1. O

2.2 Probabilistic framework

We next consider a randomized version of Algorithm 2.1, in which the local model (and

hence the step) is generated randomly.

Algorithm 2.2 Probabilistic general framework with adaptive step sizes

1-framework)

Identical to Algorithm 2.1 except that the local model and the step in Step 1 are generated

randomly.

For clarity, we summarize the notation for the random elements and their realizations

in Table 1.
Table 1: Notation for random elements and their realizations
ion_general
& ) Local model Step Iterate Step size Indicator Series
Random element M, Sk X Ay Y. H
Realization My, Sk Ty o, Yk H

We define the filtration {F}, where for each k£ > 0,

Fr = O(A4b,140,)(1,...,A4k,z4k,)(k+1), (2.5)‘eq:sigma—algeb

which is the g-algebra generated by M,, Ag, X1, ..., My, Ag, and Xi,1. In addition, we
define
Foi = {0,Q}.

istic_model)

Definition 2.1. Consider Algorithm 2.2. The sequence of random models { M} is said
to be p-probabilistically “good” if

P(Y,=1]| Fx_1) > p. (2.6) ?eq:probabilist

6



d-increment)y .\ ma 2.1 ([10, Theorem 5.3.1)). Let {Wy} be a martingale with W1 —Wy| < M < oo.

Let
C = {khm Wi, exists and is finite},
— 00

D = {limsup Wy = 400 and li;ninf Wy = —o0}.
—00

k—oo
Then we have
P(CUD) = 1.

obabilistic) Lemma 2.2. Consider Algorithm 2.2. If the sequence of random models { My} is po-

probabilistically “good” with
log 0

= — 2.7) ?eq:def_p0?
" og(r10) (27 renidetne

then we have

P(H=00) = 1.
Proof. For each k£ > 0, we define
k—1
Z = 3 Wilogy+ (1 - Yy)logd].
=0

Then .
H = Z exp (Zx) .
k=1

To prove H = oo a.s., it suffices to show that limsup, Z; > —oo a.s.. By Definition 2.1
and the definition of pg, the sequence {Z;} is a submartingale. By Doob’s decomposition
theorem ([10, Theorem 5.2.10]), {Z;} admits the unique decomposition Z; = Wy, + Py,
where {W;} is a martingale and { P} is a predictable increasing process with Py = 0. Since
| Z+1 — Zx| < max{logy, —logf} < oo, both {W;} and {P;} have bounded increments
(see the formulae for W} and Py in [10, Theorem 5.2.10]). Applying Lemma 2.1 yields
lim sup,, Z, > —oo a.s., which completes the proof. O

obabilistic) Corollary 2.2. Consider Algorithm 2.2. Under Assumptions 2.3, 2.1, and 2.2, if the

sequence of random models { My} is po-probabilistically “good” with
log 0
P = gty
then we have

IP’(hgngVf(Xk)H :o) ~ 1

Proof. Tt suffices to prove H = oo when {M,} is po-probabilistically “good”, which is
guaranteed by Lemma 2.2. O



3 Derivative-free trust region

rust-region) We begin with a simplified derivative-free trust-region method and explain how its con-
vergence fits into the abstract framework of Section 2. The method alternates between
computing a trial step from a local model, accepting the step when sufficient decrease is

observed, and updating the trust-region radius based on a model-quality criterion.

~Algorithm 3.1 A simplified first-order derivative-free trust-region method
rust-region) g .ot m,n2 >0, xg € R™, § € (0,00), 6 € (0,1), v € [1,00). For k =0,1,2,..., do the

following.

1. Build a quadratic model my(s) of f and compute s by approximately minimizing my,
in B(xy,0x) so that s satisfies (3.1).

2. Compute the ratio
f(zr) — f(@e + si)

mk(O) — mk(sk)

Ok =

3. If op > my, set xp 1 = ) + Sg; otherwise, set xp1 = xg.
4. If o > my and || gx|| > n20k, set dxr1 = Y0x; otherwise, set dx. 1 = 60y.

3.1 Basic definitions, assumptions, and existing results

Throughout this section, my denotes a C' surrogate model of f on the trust region B(xy, o).
To quantify model quality in a scale-sensitive yet dimension-free way, we use the standard
notion of fully linear models.

-14 ?
H1y-linear)’ Definition 3.1. Let f be a C' function. A C' model m is said to be (Keg, Kef)-fully linear

for f on B(z,0) if, for all s € B(0,9),
m(s) = f(z +s)| < kerd?,
IVin(s) = Vf(z +s)[| < Fegd.

At iteration k£ of Algorithm 3.1, we consider a quadratic surrogate model

1
mk(s) = f(xk) + gl-crs + §STB1<:87 RS 6(07 6/€)a

where g, € R™ and By, € R™ " approximate V f(z;) and V2 f(x},), respectively. The follow-
ing assumptions are standard in the trust-region literature and will be used throughout.

ded-h i . . ..
ed-hessian) Assumption 3.1. There ezists a positive constant Byay such that ||Bg|| < Bmax for all

k> 0.



tional-CD
actiona >Assumption 3.2. There exists a constant m € (0, 1] such that, for all k > 0, we can

compute a step sy satisfying the fractional Cauchy decrease condition

m .
mp(0) = mu(se) = < llgll mingllgwll /1| Brll, ok}, (3.1)[eq:fcd]
where by convention ||gk||/|| Bkl = oo if || Bk|| = 0.

We first recall classical global convergence results for Algorithm 3.1, which will later

appear as corollaries of our series-based analysis.

rust-region)

Theorem 3.1 ([7, Theorem 10.12]). Consider Algorithm 3.1. Under Assumptions 2.3, 3.1,
and 3.2, suppose there exist constants keg > 0 and kep > 0 such that my, is (Keg, Ker)-fully

linear for every k > 0. Then
liminf |V f(x)|| = 0.
k—o0

We next consider a randomized variant of Algorithm 3.1, in which the model construc-

tion in Step 1 is randomized.

Algorithm 3.2 Probabilistic first-order derivative-free trust-region

ust-region)?

Identical to Algorithm 3.1 except that the surrogate model in Step 1 is generated randomly.

-14 ?
Hy-linean)? iy gnition 3.2 ([2, Definition 3.2]). Consider Algorithm 3.1 with f being continuously

differentiable. The sequence of surrogate models {M}} is said to be p-probabilistically

(Keg, Ker)-fully linear if it satisfies
P (M, is (Keg, Kef)-fully linear | F_1) > p for each k > 0,

where Fj_; is defined in (2.5).

rust-region)

Theorem 3.2 ([2, Theorem 4.2]). Consider Algorithm 3.1. Under Assumptions 2.3, 3.1,
and 3.2, if {My} is po-probabilistically (Keg, kef)-fully linear with py = log8/log(y~16)

and Keg and ke being positive constants, then we have

P(ll}gngVf(Xk)H :o) -1



3.2 Convergence analysis based on the series

We now connect Algorithm 3.1 to the abstract framework of Section 2. Fix constants
Keg > 0 and ker > 0, and define the indicator

Ui (Keg, Ket) = L(my iS (Keg, Kef)-fully linear on B(wy, 0y)). (3.2)

When y, = 1 and 0y, is sufficiently small relative to ||V f(zy)]|, the trust-region mechanism
ensures acceptance of the trial step and expansion of the radius. Our goal is to verify
Assumption 2.1 and then invoke Theorem 2.1.

-successful)

Lemma 3.1 ([12, Lemma 2.7]). Consider Algorithm 3.1 and fix constants keg > 0
and ket > 0. Under Assumptions 2.3, 3.1, and 3.2, if yi(Keg, ket) = 1 and 6, < c1||V f(xy)]|
with

Ak -
cp = (Iieg -+ max {772, Bmax; ﬁ}) s (33) ?eq:def_cl?

then xpy 1 = xp + Sk and 0gy1 = YOk, meaning that both the sufficient decrease condition
and the quality condition are satisfied.

o
ecrease._tr)? Lemma 3.2. Consider Algorithm 3.1 and fix constants keg > 0 and ke > 0. Under

Assumptions 2.3, 3.1, and 3.2, if Yr(Keg, ket) = 1 and 0y, < co||V f ()| with

4I€f -1
o = (20t e {op B, ) (3.4) foqsaet c2

then we have
mm

fxy) = f(wpg1) > 4

Proof. By Lemma 3.1, we have

flxzr) = f(zr1) = m(ma(0) — my(sk))
> %Hgk\lmin{Hng/HBkH,ék},

IV f () || 0%

V

where the last inequality is due to Assumption 3.2. Since 0 < ||V f ()|, we have
Ok < IV f(2x)||/(Bmax + Feg), which implies ||g||/|| Bkl > 0. Thus, we have

fxr) = f(wpe1) >

mm mm
2 2
where the last inequality is due to the definition of yj(Keg, fef). We complete the proof by

lgrllor = UV F (@)l = Fegdk)O,

noting that
1
IVF(ze)ll = kel = SV (@)l
due to the definition of c,. O

10



We next make the connection to Algorithm 2.1 explicit. In Algorithm 3.1, we set
ap = 0 and view a successful trust-region iteration as a “good” iteration in the sense of
Section 2. More precisely, Algorithm 3.1 can be regarded as an instance of Algorithm 2.1

via the following identifications.

The step is defined as sg(ay) = s with oy = Jg.

The local model is the trust-region model my.

The sufficient decrease condition is

flee) = flze+s) > m(me(0) — my(si)).

The quality condition is
flaw) = floe+s1) = m(me(0) —my(sy)) and  [lgell > 920

With the above identifications, Assumptions 2.2 and 2.1 are verified by the following
lemmas.

The next lemma records the standard fact that the trust-region radius converges to
zero.

to_zero_tr)?

Lemma 3.3. Consider Algorithm 3.1. Under Assumptions 2.3, 3.1, and 3.2, for any

realization, we have 6, — 0 as k — oo.

The next lemma shows that, on good iterations with sufficiently small d;, the method

achieves a decrease proportional to |V f(xk)| 0.

o
trategy tr)? Lemma 3.4. Consider Algorithm 3.1. Under Assumptions 2.3, 3.1, and 3.2, for any

Keg > 0 and ke > 0, the definition of yi(Keg, ker) satisfies Assumption 2.1 with & = coe
and ¢ = mm /4, where ¢y is defined in (3.4).

We can now state the series-based convergence result for the trust-region method.

rust_region)

Theorem 3.3. Consider Algorithm 3.1 and the configuration of {yx} as (3.2). Under
Assumptions 2.3, 3.1, and 3.2, if there exist constants keg > 0 and ks > 0 such that H = oo,
then we have

lim inf |[V £ (z)]| = 0.

Theorems 3.1 and 3.2 follow from Theorem 3.3 combined with Corollaries 2.1 and 2.2,

respectively.

11



4 Direct search based on sufficient decrease

rect-search) We next consider a simplified direct-search method based on the sufficient decrease
condition. The presentation emphasizes the adaptive step-size update and prepares for

the connection with the series-based framework in Section 2.

Algorithm 4.1 A simplified direct-search method with sufficient decrease
Select g € R™, ap > 0, 0 € (0,1), v € [1,00), and a forcing function p : (0, 00) — (0, c0).
For £k =0,1,2,..., do the following.

1. Generate a set of nonzero vectors D, C R".

2. Check whether there exists a d € D;, such that

rect-search)

f(l‘k) — f(fk + Oékd) > p(ak). (4.1)‘eq:sufficient_l

3. If d exists, set xp11 = T + apd, a1 = Yay; otherwise, set xp1 = T, Qg1 = Oay,.

4.1 Basic definitions, assumptions, and existing results

In Algorithm 4.1, a function p : (0,00) — (0,00) is called a forcing function if it is
nondecreasing and satisfies p(a) = o(«) as @ — 0%. The inequality (4.1) is the sufficient
decrease condition.

Convergence analysis for variants of Algorithm 4.1 can be found in [9, 11, 14, 16]. We

briefly recall the key geometric notion needed in these results.

ine_measure) Definition 4.1 (Cosine measure). Let D be a finite set of nonzero vectors in R”. The

cosine measure of D with respect to a nonzero vector v, denoted by cm(D,v), is defined as

d"v

cm(D,v) = max ————.
aep ||d][|v]]

The cosine measure of D, denoted by cm(D), is defined by

cm(D) = ye%}li\%o} cm(D, v).

We impose the following standard normalization on the direction sets.

it_1 th . . . . . . .
ih-eng >Assumptlon 4.1. For each k > 0, the direction set Dy, is a finite set of unit vectors in

R™.

12



Remark 4.1. Assumption 4.1 can be replaced by assuming uniform lower and upper
bounds on the lengths of vectors in all direction sets. Without loss of generality, we

normalize all directions to unit length.

With these assumptions in place, global convergence for deterministic direction sets

follows from classical analysis.
ninistic.ds) Theorem 4.1 ([14, Theorem 3.11]). Consider Algorithm 4.1. Under Assumptions 2.3 and
4.1, if there exists a constant k > 0 such that cm(Dy) > K for each k > 0, then we have
liminf |V f(x)|| = 0.
k—o0

We also consider a randomized variant, in which the direction set is generated randomly.

Algorithm 4.2 Probabilistic direct search

rect-search)

Identical to Algorithm 4.1 except that the direction set in Step 1 is generated randomly.

We denote the random direction set by ®,, with realization Dy. The convergence

analysis of Algorithm 4.2 relies on the notion of “p-probabilistically x-descent”.

-k_descent)?

" Definition 4.2 ([11, Definition 3.1]). Consider Algorithm 4.2 with f being differentiable.

The direction set sequence {D;} is said to be p-probabilistically x-descent if it satisfies
P (cm (g, —Vf(Xy)) > k| FPy) > p for each k >0,
where F2 | = (Do, ...,Dx_1) and F?, is the trivial o-algebra.

Using this notion, [11] established the global convergence of Algorithm 4.1 under

random direction sets.

bilistic_ds)
Theorem 4.2 ([11, Theorem 3.4)). Consider Algorithm 4.1. Under Assumptions 2.3

and 4.1, if {Dy} is p-probabilistically r-descent with p = log0/log(y~10) and a positive

constant k, then we have

P(lﬁg}fnw(xk)n :o) -1

4.2 Convergence analysis based on the series

c:ds_series) We now connect Algorithm 4.1 to the abstract framework of Section 2. Fix & > 0, and

define the indicator
y(k) = 1(em(Dy, =V f(zk)) > k). (4.2)[eq:yk_ds]|

Intuitively, yx(x) = 1 means that D contains a direction making an angle uniformly

bounded away from 7/2 with the steepest-descent direction.

13



-decreasing) Lemma 4.1. Consider Algorithm 4.1 and fiz a constant k > 0. Under Assumptions 2.3

and 4.1, if yp(k) = 1 and oy, < &||V f(zx)||/L, then we have
mesc { () = f(o+axd)} > IV () o

deDy

Proof. By Definition 4.1, when y;(x) = 1, there exists dj € Dy such that
=Vf(a) ', > &IVl = &V f(@)ll,
where the last equality comes from Assumption 4.1. Then we have

max {f(zy) — fzx + oand)} > f(ax) — flan + oudy)

deDy,
T 7% L 2
> —Vf(xy) dkozk—Eozk
L,
> WV )l — Sa.

where the second inequality is due to the Lipschitz continuity of V f by Assumption 2.3.
The result follows from the fact that x|V f(zx)|lax — Laz/2 > k| Vf(xk)||ar/2 when
ap < K|V f(zp)ll/L. O

For the series-based argument below, we also impose a complete polling rule: whenever

an iterate is updated, the best trial point among all polling directions is selected.

ete_polling) Assumption 4.2. Consider Algorithm 4.1. If xp11 # xy, then we have

f(xp41) = 52%2 f(@n + agd).

We next make the connection to Algorithm 2.1 explicit. Algorithm 4.1 can be viewed

as an instance of Algorithm 2.1 via the following choices.

e The step is defined as sy (ay) = agdy, with

dr = argmin f(zy + axd).
deDy

e The local model is defined as

( ) f(:L’k + ozks), if s e D, U {0},
mr(S) =
00, otherwise.

14



e The sufficient decrease condition and the quality condition are defined as
flak) = flar + sp(ar)) > plag).

With the above identifications, Assumptions 2.2 and 2.1 are verified by the following
lemmas.

epsize_to_0)

Lemma 4.2 ([14, Theorem 3.4]). Consider Algorithm 4.1. Under Assumption 2.3, we
have oy, — 0.

ds)?
brategy-ds) Lemma 4.3. Consider Algorithm 4.1. Under Assumptions 2.3, 4.1, and 4.2, for any k > 0,

the definition of yr(k) satisfies Assumption 2.1 with some & depending on p and &
and ( = K/2.

Proof. By Lemma 4.1, it remains to show that, for every ¢ > 0, there is a con-
stant & € (0, x/L] such that, if yp(r) =1, ||V f(zg)]] > €, and ax < @, then

K KE
:[riré%x{f(xk)—f(xkjLozkd)} > §||Vf(xk)||ozk > 5 O > plag), (4.3)[eq:ds_satisfy_
k

where the first inequality comes from Lemma 4.1 and & < k/L. The existence of & fulfilling

the last inequality in (4.3) comes from the fact that p(a) = o(«). O

We can now state the main convergence result for direct search.

e_series_ds)

Theorem 4.3. Consider Algorithm 4.1 and the configuration of {yx} as (4.2). Under
Assumptions 2.3, 4.1, and 4.2, if there exists a constant k > 0 such that H(k) = oo, then

liminf |V f(x)|| = 0.
k—o0

Theorems 4.1 and 4.2 follow from Theorem 4.3 combined with Corollaries 2.1 and 2.2,

respectively.

4.3 Necessity of the complete polling assumption

nterexample) We now show by a counterexample that the complete polling assumption (Assump-
tion 4.2) cannot be dropped from Theorem 4.3. Specifically, we construct an instance
of Algorithm 4.1 without complete polling for which H(k) = oo for some xk > 0, yet
liminfy, ||V f(zx)]| > 0.
The construction exploits the contrast between the divergence of the harmonic series

> ore 1/k = 0o and the convergence of the sum of squared reciprocals Y -, 1/k* = 7% /6.
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Setup

Consider the quadratic objective f(z) = s27x on R?, so that V f(z) = 2 and the unique

minimizer is the origin. Define a decreasing sequence of radii
T > ? ii?
re = 14+—— Z 2 (>1, (4.4) ?eq:def_radii?

together with ro = 1+ 72/6 and 7o, = limy_,o,7¢ = 1. These radii define a family of

concentric circles centered at the origin, with

1

72 (> 1. (4.5) 7eq:gap_radii?

Te—1 —T¢ =

We set the algorithmic parameters to v = 1/6 = 2 and the forcing function to p(a) = %oﬂ.

Construction of the sequences

We now define the sequences {zx}, {ax}, {Dx}, and an auxiliary index sequence {{;} that
records which circle the current iterate lies on. Set z¢ = (ro,0), g = 1, and ¢y = 0, with
the convention 1/0 = oo. For each k > 0, define

{— 23U {deR?: ||d| =1, ||zx+ ard| =141} if o <+

e b
4.6 :
. ' ) ( ) eq:def_Dk
{— if aE > 7

[EA

D), =

gk +1 if (67 S ZL’
U1 = * (4.7) 7eq:def_ellk?
519 if Qg > i,

Ty + apdy, where dy, € Dy, satisfies ||z, + apdi|| =1y, if ap < i,

Tht = (1.8) foq:det 3k

Tk if Qg > é,

QOék if (6773 S el

Qg1 = (4.9) ‘ eq:def_alphak‘

%
1 : 1
50 if ay, > e

te_polling)? Remark 4.2 (Role of incomplete polling). The key mechanism of this counterexample is

the choice of xjyq in (4.8) when oy < 1//;. In this case, the direction set Dy contains two
directions: the steepest-descent direction —zy /||| and a nearly tangential direction dj,
satisfying ||xy + agdi|| = 74, +1. Among these, the steepest-descent direction produces a

larger decrease in f because it moves x; toward the origin:

far) — floe — awn/l|al]) > flxn) — f(on + ardy).
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illustrate)

mple_valid)

t=zr/ |zl
To4+1

Figure 1: Hlustration of the counterexample when ay, < 1/¢;. The direction set Dy,
contains two directions (red arrows): the steepest-descent direction —xy/||zx| and a nearly
tangential direction dj that moves xj to the next inner circle. The algorithm selects dj,
and sets xpy1 = xp + agdy on the circle of radius r,y4, instead of using —xy/||zx||, which
would yield a larger decrease in f. This is precisely where complete polling is violated.

o
However, our construction deliberately selects the direction di that moves the iterate
to the next inner circle while avoiding the steepest-descent direction. Under complete
polling (Assumption 4.2), the algorithm would be required to choose the direction that
minimizes f, namely —xy/||zg||, and the resulting decrease in f would be much larger.
It is this “wasteful” choice of direction — permitted only when complete polling is not
enforced — that allows the total decrease in f to remain finite even though the series H

diverges.

Validity of the construction

We first verify that the above sequences form a valid realization of Algorithm 4.1 (without
complete polling).

2

"Lemma 4.4. The sequences {x}, {ax}, and {Dy} defined in (4.6)—(4.9) form a valid

realization of Algorithm 4.1 with the parameters v = 2, 0 = 1/2, p(a) = %oﬁ, and
f(z) = %xTx. In particular, the direction sets consist of unit vectors, and the step-size

update rule in (4.9) agrees with Step 3 of Algorithm 4.1 for all k with £, > 3.

Proof. We verify each step of Algorithm 4.1.

17



Step 1 (Direction set). By construction, Dy, in (4.6) is a finite set of unit vectors for
each k > 0, satisfying Assumption 4.1.

Step 2 (Sufficient decrease check). We need to show that the step-size update rule
matches the sufficient decrease condition (4.1). Consider the case ay < 1/ with £, > 3.

In this case, xy11 = @) + ogdy with ||2g41]] = 74,41, and
1 1
fxg) = f(opa) = 5( = Th) = 5 (re + o) (e, = To)
1 1 (4.10) ?eq:counterexar

T > a2
e+ 12 = 2%

where the first inequality uses 74, + 74,41 > 2 (since both radii exceed 1) and the second

> Tfk _r€k+1 - = p(ak>7

inequality holds because oy < 1/¢; and ¢, > 3 imply %ai < ﬁ < m Hence the
direction d € Dy, achieves sufficient decrease, so Step 3 of Algorithm 4.1 expands the step
size: api1 = Yo = 2y, consistent with (4.9).

Consider now the case ay > 1/¢; with ¢, > 3. Here Dy = {x/||zk]|}, and the
only trial point is zy + gy /||zk||, which has ||zx + agazr/||zil||| = e, + e > 74, sO
f(zk + agze/||zk||) > f(x). No direction achieves sufficient decrease, so 1 = 25 and
g1 = Bag = ay /2, again consistent with (4.9).

Step 3 (Iterate and step-size update). By the above analysis, the iterate update
in (4.8) and the step-size update in (4.9) agree with Step 3 of Algorithm 4.1 for all k& with
l; > 3. For the finitely many initial iterations with ¢, < 3, the sequences can be checked

directly. O]

Divergence of the series

We now show that H (k) = oo for k = 1/2.

_H_diverges)

Lemma 4.5. For the sequences defined in (4.6)—(4.9) with k = 1/2 and yi(k) defined as
in (4.2), we have H(1/2) = oc.

Proof. We first determine y;(1/2). When oy < 1/¢, the direction —zy/||xk|| belongs to
Dy, and cm(Dy, =V f(zx)) = cm(Dy, —zx) = 1 > 1/2, s0 yx(1/2) = 1. When ay > 1/4;,
we have Dy = {xy/||zk||}, so ecm(Dy, —x;) = —1 < 1/2 and hence y;(1/2) = 0. Therefore,
for ¢, > 3, the indicator y,(1/2) = 1 if and only if oy < 1/¢, and the step-size update

satisfies g = YE(/291-v(/2) o Consequently, there exists a constant ¢ > 0 such that

H(1/2) = CZOzk. (4.11)‘eq:H_equals_C_
k=1

We claim that o, > 1/(2¢y) for each k > 1. The base case holds since iy =2 > 1/2 =1/(2¢, )}
(as £; = 1). For the inductive step, suppose a,, > 1/(2¢,). We consider two cases.

18



o If a, >1/0,, then (, 1y =¥, and a1 = a,, /2 > 1/(20,,) = 1/(20,,41).
o If v, <1/0,, then ¢, ;1 =0, +1 and a1 =20y, > 1/0, > 1/(20,,41).

In both cases a1 > 1/(20,,4+1), completing the induction. Since o — 0 by Lemma 4.2,
we deduce £, — co. Moreover, each value ¢ > 1 is attained by ¢ for at least one index k

(because /) increases by at most 1 at each step), so
2z ) 5 250 g =0
k=1 k=1
Together with (4.11), this gives H(1/2) = oc. O

Non-convergence of the iterates

onvergence)? | emma 4.6. For the sequences defined in (4.6)—(4.9), we have limg_,0 ||V f(zx)|| = 1. In
particular, liminf, o ||V f(zg)]| = 1 # 0.

Proof. By construction, ||| = 4, for each & > 0. Since ¢, — oo (as shown in the proof
of Lemma 4.5), we have |V f(xy)| = ||zk]] =70, = 7o = 1> 0. O

5 Relation to the non-convergence result and open questions

sec:remarks) Recall that, in Section 4.2, for direct search with sufficient decrease and complete polling,

we defined the indicator

yk(k) = 1(cm(Dy, =V f(21)) > )

for a fixed k > 0, and the series

k—1

_ i e (k)gl—ye(r

k=0 =0

Theorem 4.3 shows that first-order convergence of direct search follows once there ex-
ists k > 0 such that H(k) = occ.
In contrast, the paper [13] studies the opposite question: under what conditions can

(probabilistic) direct search fail to converge? There, the indicator is defined as

2y = ﬂ(cm(Dk, —Vf(l'k)> > O)
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Based on {z}, they define another series

|
-

~

H = Zk 7’”91‘2’5. (5.1) ?eq:hat_H?

0o k

k=0

[
Il
(en)

Assuming that f is smooth and convex, [13] shows that when H < oo, direct search with
sufficient decrease can fail to converge (without requiring complete polling).

To compare these series, define

0o k-1
H(k) = Zyk(ﬁ)nvye(ﬁ)glwe(ﬁ)_
k=0 =0
Then we always have H(x) > H(x). Moreover, since y;(x) = 1 implies z, = 1 for

any x > 0, we have H(x) > H for any x > 0. Hence, the convergence condition H (k) = co
in Theorem 4.3 is (in general) stronger than requiring H= 00, while the non-convergence
regime H < oo studied in [13] does not contradict our result.

Several questions remain open. First, for direct search, the borderline case k = 0 in the
definition of yx (k) is not covered by our analysis. Second, although Subsection 4.3 shows
that complete polling is necessary for our deterministic series-based convergence result, it
is unclear whether complete polling is also essential in the probabilistic setting. Third, it
would be interesting to develop an analogous non-convergence theory for derivative-free
trust-region methods, complementing the series-based convergence results in Section 3.
Fourth, we only study a simplified DFO trust-region framework. In contrast, the classical
derivative-free trust-region algorithm (see, e.g., Algorithm 10.1 in [7]) includes a criticality
step that explicitly addresses the regime of small model gradients by reducing the trust-
region radius to be commensurate with the model gradient. It would be interesting to
understand whether this classical mechanism implies our series assumption automatically,

i.e., whether it necessarily generates sufficiently many fully linear models so that H = oo.

6 Conclusion

:conclusion) We proposed a unified series-based perspective for the convergence analysis of derivative-
free trust-region and direct-search methods. In particular, we identified an algorithm-

determined series of the form

I
—

H = ,yye(gl—yz’

oo k
= 0

k

o~
I

0



and showed that its divergence provides a simple sufficient condition for first-order conver-
gence, namely liminfy, ||V f(z)]| = 0.

We illustrated this framework by recovering convergence guarantees for a simplified
derivative-free trust-region method (including the deterministic and probabilistic settings)
and by establishing a parallel series condition for direct search based on sufficient decrease.
For direct search, our analysis requires complete polling; we also provided a counterexample
(Subsection 4.3) showing that complete polling cannot be removed from our series-based
convergence theorem in general.

Finally, we discussed the connection between our convergence condition and the
complementary non-convergence analysis in [13], highlighting how different series conditions
reflect different algorithmic regimes. Together, these results suggest that series conditions
offer a useful lens for understanding both convergence and potential failure modes of

randomized and deterministic derivative-free methods.

References

let_Hare_2017|[1] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer, Cham, 2017.

Vicente_2014|[2] A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Convergence of trust-region methods
based on probabilistic models. SIAM J. Optim., 24:1238-1264, 2014.

et_etal_2019|[3] J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg. Convergence rate analysis of a
stochastic trust region method via supermartingales. INFORMS J. Optim., 1:92-119, 2019.

Roberts_2022|[4] C. Cartis and L. Roberts. Scalable subspace methods for derivative-free nonlinear least-
squares optimization. Math. Program., 199:461-524, 2023.

d_Toint_2000|[5] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM, Philadelphia,
2000.

icente_2009a|[6] A. R. Conn, K. Scheinberg, and L. N. Vicente. Global convergence of general derivative-
free trust-region algorithms to first- and second-order critical points. SIAM J. Optim.,
20:387-415, 2009.

icente_2009b|[7] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization,
volume 8 of MOS-SIAM Ser. Optim. STAM, Philadelphia, 2009.

in_Yuan_2000][8] Y. H. Dai, J. Han, G. Liu, D. Sun, H. Yin, and Y. Yuan. Convergence properties of nonlinear
conjugate gradient methods. SIAM J. Optim., 10:345-358, 2000.

Vicente_2016][9] M. Dodangeh and L. N. Vicente. Worst case complexity of direct search under convexity.
Math. Program., 155:307-332, 2016.

21



urrett_2010][10]

_Zhang_2015][11]

_Zhang_2018][12]

Zhang_2026a|[13]

‘'orczon_2003][14]

y_Wild_2019][15]

icente_2013][16]

oLfe_1569][17]
WoLge_1571][18]

endijk_1970][19]

R. Durrett. Probability: Theory and Fxamples. Camb. Ser. Stat. Probab. Math. Cambridge
University Press, Cambridge, fourth edition, 2010.

S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic
descent. SIAM J. Optim., 25:1515-1541, 2015.

S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Complexity and global rates of
trust-region methods based on probabilistic models. IMA J. Numer. Anal., 38:1579-1597,
2018.

C. Huang and Z. Zhang. Non-convergence analysis of probabilistic direct search, 2026.

T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives
on some classical and modern methods. SIAM Rev., 45:385-482, 2003.

J. Larson, M. Menickelly, and S. M. Wild. Derivative-free optimization methods. Acta
Numer., 28:287-404, 2019.

L. N. Vicente. Worst case complexity of direct search. EURO J. Comput. Optim., 1:143-153,
2013.

Ph. Wolfe. Convergence conditions for ascent methods. SIAM Rev., 11:226-235, 1969.

Ph. Wolfe. Convergence conditions for ascent methods. ii: some corrections. SIAM Rev.,
13:185-188, 1971.

G. Zoutendijk. Nonlinear programming, computational methods. In J. Abadie, editor,

Integer and Nonlinear Programming, pages 37-86. North-Holland, Amsterdam, 1970.

22



