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Abstract

This paper mainly focuses on evaluating American options under regime-switching
jump-diffusion models (Merton’s and Kou’s models). An efficient numerical method
is designed for the concerned problems. The problem of American option pricing
under regime-switching jump-diffusion models can be described as a free-boundary
problem or a complementarity problem with integral and differential terms on an un-
bounded domain. By analyzing the relation of optimal exercise boundaries among
several options, we truncate the solving domain of regime-switching jump-diffusion
options, and present reasonable boundary conditions. For the integral terms of the
truncated model, a composite trapezoidal formula is applied, which guarantees that
the integral discretized matrix is a Toeplitz matrix. Meanwhile, a finite difference
scheme is proposed for the resulting system, which leads to a linear complementary
problem (LCP) with a unique solution. Moreover, we also prove the stability, mono-
tonicity, and consistency of the discretization scheme and estimate the convergence
order. In consideration of the characteristics of the discrete matrix, a projection and
contraction method is suggested to solve the discretized LCP. Numerical experiments
are carried out to verify the efficiency of the proposed scheme.

Keywords American option, regime-switching, jump-diffusion, finite difference
method, projection and contraction method.
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1 Introduction
An option is a financial derivative that allows the holder to buy or sell a specific quantity and
quality of underlying assets at a fixed price on a specified date or within an agreed period.
In options trading, the fixed price is called the strike price, and the fixed date is called
the expiration date. According to the difference between buying and selling the underlying
asset in the contract, options can be divided into call options (buy) and put options (sell).
According to the different execution times of the option, it can also be divided into European
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options and American options. European options must be implemented on the expiration
date specified in the contract, while American options can be executed on any trading day
(including the expiration date) before the expiration date. The option has always been
popular because of its characteristics of avoiding the risk of asset price fluctuations and
becoming a critical hedging tool.

As the financial market takes off, the option pricing problem has been paid more and
more attention by issuing companies and investors. It has become a widespread research
problem in financial mathematics. As early as 1900, Bachelier mentioned option pricing in
his dissertation [4]. In 1973, Black and Scholes established the famous Black-Scholes model
(B-S model) and gave the formula of European option pricing [7]. Since there is no explicit
expression for American options, researchers have to resort to numerical methods. Cox et
al. proposed the binary tree method [12] in 1979, Han et al. proposed the method based on
non-local boundary conditions [18] in 2003, and Yang et al. proposed the front-fixing finite
element method [21] in 2008.

To make up for the fact that the classical B-S model can not explain the phenomenon
that asset prices jump due to external factors, Merton introduced the Poisson process to
describe the fluctuation behavior of asset prices in 1976 [28]. Since then, researchers have
begun to study the option pricing model under the jump-diffusion model. Since the model
contains a non-local integral term, people prefer a numerical solution to the model. In 2005,
Achdou et al. summarized most numerical solutions in their book [1]. Besides, Cont et al.
proposed the explicit-implicit finite difference method [10], and Ascher et al. [3] and Frank
et al. [15] designed a second-order explicit-implicit method.

Over the past few decades, researchers found that standard option pricing models cannot
accurately account for cyclical changes in option prices caused by short-term political or
economic uncertainty. In 1989, Hamilton first proposed the regime-switching model for
American option pricing [17]. In 2002, the research results of Elliot and Buffington made
the model more popular [8]. In addition to option pricing, researchers also generalized the
regime-switching model to other fields [13, 16, 19, 37]. Numerous research work on numerical
methods of option pricing under the regime-switching model can refer to [9, 24, 33, 36].

Inherently, researchers try combining the regime-switching and jump-diffusion models
in American option pricing. The main task of this problem is to solve a system of coupled
partial integro-differential equations (PIDEs), and it is difficult to obtain a closed-form
solution. Hence, researchers used several numerical methods to get its numerical solution in
recent years. Lee designed a second-order finite difference method [27]. Bastani et al. used
a radial basis collocation method in a meshfree framework [6]. More recent related works
can refer to [23, 29, 31, 32, 34, 35].

The problem of American option pricing under regime-switching jump-diffusion models
poses two main challenges for efficient numerical implementation. The first challenge is
that this problem has an infinite domain, and a reasonable truncation should be given to
localize it. In our work, we propose a novelty truncation technique for solving American
options on a bounded domain. The truncated condition is accurate on the left and relaxed
on the right, where the looseness is admissible because the option price tends to zero on
the right. Our new truncation technique also could avoid part of the numerical error since
some integral terms can be calculated precisely in the pricing model. The second challenge
is that it is difficult to conceive a succinct numerical scheme with complete theoretical
analysis and efficient numerical solutions for evaluating options. By our truncation tactic,
the standard composite trapezoidal formula and finite difference scheme are competent for
the discretization of the truncated model problem and result in a discretized LCP, which has
a numerically friendly structure and can be solved effectively by projection and contraction
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method (PCM). We analyze the stability, monotonicity, and consistency of the discretization
scheme, and establish the error estimation additionally. The numerical experiments show
the efficiency of our method for Merton’s and Kou’s models. To our knowledge, this paper’s
work on truncation technique and numerical analysis is unexplored for the PIDE-LCP model
arising from American option pricing under regime-switching with jumps.

The rest of this paper is organized as follows. In Section 2, we introduce the original
option pricing model and its simplified form, respectively. We also use truncation techniques
to localize the infinite domain of the simplified pricing model to be a bounded one. The
discretized model is presented by applying the composite trapezoidal formula and finite
difference method in Section 3. Simultaneously, we analyze the related properties of the
discretization scheme and estimate the convergence error. In Section 4, we apply the tailored
projection and contraction method to solve the discrete model, and show some convincing
numerical results. Conclusions are given in Section 5.

2 Pricing Model and Truncation
In this section, we will briefly describe the mathematical model of American option pricing
under regime-switching jump-diffusion models and simplify the model by variable substitu-
tions. Then we propose a truncation technique, which leads to an exact condition on the
left boundary.

2.1 Option Pricing Model
Before introducing the pricing model, let us present some preliminary. Suppose αt is a
continuous Markov chain defined in probability space (Ω,F ,P) and its finite state space is
M = {1, 2, . . . ,Q}, where Q is the total number of states and each state represents a specific
regime. According to the Markov chain theory, assume A = (αij)Q×Q is the generator matrix
of αt, where αij satisfies the following conditions:

• αij ⩾ 0, ∀ i ̸= j, 1 ⩽ i, j ⩽ Q;

• αii ⩽ 0 and αii = −
∑
j ̸=i

αij, 1 ⩽ i ⩽ Q.

Under the risk-neutral measure, the underlying asset price St satisfies the following stochastic
differential equation [27]:

dSt

St−
= (rαt − dαt − λαtκ) dt+ σαtdWt + yαtdN αt

t , (1)

where rαt is risk-free rate, dαt and σαt stand for the dividend and the volatility of the under-
lying asset in regime αt, respectively. Wt is a Brownian motion and N αt

t denotes a Poisson
process with intensity λαt depending on the regime αt. yαt is a set of independent, identically
distributed random variables with probability density g(y) and represents the jump ampli-
tude from St− to St in regime αt. The expected jump percentage is κ = E (yαt − 1). It’s
worth noting that the stochastic process αt, Wt, N 1

t ,N 2
t , . . . ,NQ

t are mutually independent.
According to Theorem 6.2 in [22], if we know the price of either an American call option

or an American put option, we can calculate the price of the other one directly. Thus, we
consider American regime-switching jump-diffusion options on the asset price St = S, and
take the put option with the expiry date T and strike price K as an example. According to
the definition of American put option, the solving domain [0,+∞)× [0, T ] could be divided
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into holding domain Σ
(i)
1 and exercising domain Σ

(i)
2 in regime i, where i ∈ {1, 2, . . . ,Q}.

In the holding domain Σ
(i)
1 , the option price satisfies Pi(S, t) > max{K − S, 0}; and in the

exercising domain Σ
(i)
2 , the option price satisfies Pi(S, t) = max{K − S, 0}. It is not hard

to find that there is a natural continuous boundary Γi : S = Bi(t), 0 ≤ t ≤ T between Σ
(i)
1

and Σ
(i)
2 , which is called optimal exercise boundary.

Based on the stochastic differential equation (1), using ∆−hedge principle and Itô for-
mula, we could derive that the option price Pi = Pi(S, t) on Σ

(i)
1 satisfies the following partial

integro-differential equations [14]:

LiPi(S, t) =
∂Pi

∂t
+

1

2
σ2
i S

2∂
2Pi

∂S2
+ (ri − di − λiκ)S

∂Pi

∂S

− (ri + λi − αii)Pi +
∑
l ̸=i

αilPl + λi

ˆ +∞

0

Pi (Sy, t) g (y) dy = 0, i = 1, · · · ,Q.
(2)

Let P (S, t) = (P1(S, t), . . . , PQ(S, t))
⊤, then the option pricing problem could be described

in the form of a set of free boundary problems:

LiPi(S, t) = 0, Bi(t) < S < +∞, 0 ≤ t < T,

Pi(S, T ) = P ∗(S), Bi(T ) < S < +∞,

Pi(S, t) = P ∗(S), 0 ≤ S ≤ Bi(t), 0 ≤ t ≤ T,
∂Pi

∂S
(Bi(t), t) = −1, 0 ≤ t < T,

lim
S→+∞

Pi(S, t) = 0, 0 ≤ t < T,

(3)

for i ∈ {1, 2, . . . ,Q}, where P ∗(S) = max{K−S, 0}. In fact, the free boundary problem (3)
also could be rewritten as the complementarity problem [27]:

−LiPi(S, t) ≥ 0,
Pi(S, t)− P ∗(S) ≥ 0,
LiPi(S, t) · (Pi(S, t)− P ∗

i (S)) = 0,
Pi(S, T ) = P ∗(S),
Pi(0, t) = K,
lim

S→+∞
Pi(S, t) = 0,

(4)

for i ∈ {1, 2, . . . ,Q}, where (S, t) ∈ [0,+∞)× [0, T ).
The complementarity problem (4) is a backward variable-coefficient problem, which could

be transformed into a foreword constant-coefficient form by using the transformations

τ = T − t, S = ex, Vi(x, τ ) ≜ Pi(S, t).

For clarity, we take Q = 2 as an example to present the transformed problem given by

LiVi(x, τ ) ≥ 0,
Vi(x, τ)− V ∗(x) ≥ 0,
LiVi(x, τ ) · (Vi(x, τ )− V ∗(x)) = 0,
Vi(x, 0) = V ∗(x),
lim

x→−∞
Vi(x, τ ) = K,

lim
x→+∞

Vi(x, τ ) = 0,

(5)
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for i ∈ {1, 2}, where (x, τ ) ∈ (−∞,+∞)× (0, T ], V ∗(x) = max{K−ex, 0}, and the operator
Li is given by

LiVi(x, τ) =
∂Vi
∂τ

− 1

2
σ2
i

∂2Vi
∂x2

+

(
1

2
σ2
i − ri + di + λiκ

)
∂Vi
∂x

+ (ri + λi − αii)Vi −
∑
l ̸=i

αilVl − λi

ˆ +∞

0

Vi (x+ ln y, τ) g (y) dy.
(6)

Further, in order to transform the differential part of the operator Li into a conservation
form, we make the transformation Vi(x, τ) = Wi(x, τ)e

ξiτ+ηix, where ηi and ξi satisfy
ηi =

1

2
+

1

σ2
i

(−ri + di + λiκ),

ξi =
1

2
σ2
i η

2
i − (

1

2
σ2
i − ri + di + λiκ)ηi − (ri + λi − αii).

Now, the complementarity problem (5) is simplified to the following form:

LciWi(x, τ ) ≥ 0,
Wi(x, τ )−W ∗

i (x, τ) ≥ 0,
LciWi(x, τ ) · (Wi(x, τ)−W ∗

i (x, τ)) = 0,
Wi(x, 0) = W ∗

i (x, 0),
lim

x→−∞
Wi(x, τ) = lim

x→−∞
W ∗

i (x, τ ),

lim
x→+∞

Wi(x, τ) = 0,

(7)

for all i ∈ {1, 2}, where W ∗
i (x, τ) = e−ξiτ−ηix max{K − ex, 0}, and the operator Lci is given

by
LciWi(x, τ) =

∂Wi

∂τ
− 1

2
σ2
i

∂2Wi

∂x2
−
∑
l ̸=i

αilWle
(ξl−ξi)τ+(ηl−ηi)x

− λi

ˆ +∞

0

Wi (x+ ln y, τ) g (y) yηidy.

It is necessary to claim that we will specifically consider two different jump-diffusion
models: Merton’s model [28] and Kou’s model [25]. The probability density function in
Merton’s model can be written as

g(y) =
1√
2πδy

e−
(ln y−µ)2

2δ2 , (log-normal distribution)

and in Kou’s model can be read as

g(y) = qθ2y
θ2−1

1{0≤y<1} + pθ1y
−θ1−1

1{y≥1}, (log-double-exponential distribution)

where 1χ is the indicator function of the set χ. Note that the parameters µ and δ in log-
normal distribution stand for the expectation and standard deviation of the random variable
ln y, respectively. And the parameters in log-double-exponential distribution must satisfy
that p, q, θ2 > 0, θ1 > 1, and p+ q = 1.
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2.2 Truncation technique
In this subsection, we will introduce a truncation technique to truncate the infinite spatial
domain of the simplified model (7) into a bounded one. The technique consists of an exact
truncation on the left and an empirical estimation truncation on the right. We discuss the
original problem (3) before transformations, and establish inequalities of prices and optimal
exercise boundaries between the original problem and its two related problems firstly. Then,
with the help of the inequalities, the left boundary of the solution domain in (7) shall be
truncated at a fixed position, and an exact boundary condition is obtained.

For clearness, we first review the following two types of options.

Definition 1. An option is called a permanent American put option under jump-diffusion
model in regime i (i = 1, 2, . . . ,Q) if its value function P̄i = P̄i(S) satisfies

L̄iP̄i(S) = 0, B̄i < S < +∞,

∂P̄i

∂S
(B̄i) = −1,

P̄i(B̄i) = K − B̄i,

lim
S→+∞

P̄i(S) = 0,

(8)

where B̄i is the optimal exercise boundary, and the operator L̄i is given as:

L̄iP̄i =
1

2
σ2
i S

2d
2P̄i

dS2
+ (ri − di − λiκ)S

dP̄i

dS
− (ri + λi)P̄i + λi

ˆ +∞

0

P̄i(Sy)g(y)dy.

Definition 2. An option is called an American put option under jump-diffusion model in
regime i (i = 1, 2, . . . ,Q) if its value function P̃i = P̃i(S, t) satisfies

L̃iP̃i(S, t) = 0, B̃i(t) < S < +∞, 0 ≤ t < T,

P̃i(S, t) = max{K − S, 0}, 0 ≤ S ≤ B̃i(t), 0 ≤ t ≤ T,

P̃i(S, T ) = max{K − S, 0}, B̃i(T ) < S < +∞,

∂P̃i

∂S

(
B̃i(t), t

)
= −1, 0 ≤ t < T,

lim
S→+∞

P̃i(S, t) = 0, 0 ≤ t < T,

(9)

where B̃i(t) is the optimal exercise boundary, and the operator L̃i is given as:

L̃iP̃i =
∂P̃i

∂t
+

1

2
σ2
i S

2∂
2P̃i

∂S2
+ (ri − di − λiκ)S

∂P̃i

∂S
− (ri + λi)P̃i + λi

ˆ +∞

0

P̃ (Sy, t)g(y)dy.

Next, we recall some useful results by the following lemmas, which helps us establish
inequalities of prices and optimal exercise boundaries between the original problem and its
two related problems.

Lemma 1 (cf. [30]). The option price P̃i(S, t) decreases monotonically with respect to S
and t. And the optimal exercise boundary B̃i(t) increases monotonically with respect to t,
which leads to

B̃i(t) ≤ B̃i(T ) = Kmin

{
ri
di
, 1

}
. (10)

Here, P̃i(S, t) and B̃i(t) are defined in Definition 2.

6



Lemma 2 (cf. [30]). If T1 ≥ T2 and t ∈ [0, T2], we have

P̃i(S, t;T2) ≤ P̃i(S, t;T1) ≤ P̃i(S, t;∞) = P̄i(S),

B̄i = B̃i(t;∞) ≤ B̃i(t;T1) ≤ B̃i(t;T2),
(11)

where P̃i(S, t;T ) represents the option price defined in Definition 2 with expiry date T, and
B̃i(t;T ) is the same. In addition, P̄i(S) and B̄i are defined in Definition 1.

Lemma 3 (cf. [30]). For all t ∈ [0, T ), P̃i(S, t) is a convex function respect to S, so we have

∂2P̃i

∂S2
(S, t) ≥ 0,

where P̃i(S, t) is defined in Definition 2.

Now, we can obtain the following inequalities for option prices and optimal exercise
boundaries.

Theorem 1. Suppose that Q = 2 in problem (3), and r1 = r2, d1 = d2, σ1 ≥ σ2, λ1 ≥ λ2,
then we have

Pi(S, t) ≤ P̃1(S, t) ≤ P̄1(S),

B̄1 ≤ B̃1(t) ≤ Bi(t),
(12)

where P̄1(S) and B̄1 are defined in Definition 1, P̃1(S, t) and B̃1(t) are defined in Definition 2,
and Pi(S, t) and Bi(t) are the option price and optimal exercise boundary for American put
options under the regime-switching jump-diffusion models with i = 1, 2.

Proof. We only need to prove the inequalities of option prices, and the inequalities of optimal
exercise boundaries will be obtained once those of option prices are achieved.

Let P̃ (S, t) = (P̃1(S, t), P̃1(S, t))
⊤. Using the definition of L̃1 and the property that

L̃1P̃1 ≤ 0, we can obtain that

L1P̃1 = L̃1P̃1 + (α11 + α12)P̃1 ≤ 0. (13)
By the assumptions r1 = r2, d1 = d2, and σ1 ≥ σ2, we can get

L2P̃1 =L̃1P̃1 +
1

2

(
σ2
2 − σ2

1

)
S2∂P̃

2
1

∂S2
−(λ2 − λ1)κS

∂P̃1

∂S

− (λ2 − λ1)P̃1 + (λ2 − λ1)

ˆ +∞

0

P̃1(Sy, t)g(y)dy

≤(λ2 − λ1)

ˆ +∞

0

(
P̃1(Sy, t)− P̃1(S, t)− (Sy − S)

∂P̃1

∂S
(S, t)

)
g(y)dy.

(14)

To be precise, here we use the property of L̃1P̃1 ≤ 0, the conclusion of Lemma 3, the defini-
tion of κ (κ = E (y − 1)) and the property of probability density functions (

´ +∞
0

g(y)dy = 1)
in order.

Furthermore, by the convexity of P̃1(·, t) (see lemma 3) and λ1 ≥ λ2, we know the right-
hand side of inequality (14) is nonpositive. Moreover, it is not difficult to find that the
inequality Pi ≤ P̃1 always holds in the boundary without considering the position of the
optimal exercise boundaries. Therefore, we can use the comparison principle [14] to obtain
the left price inequality. The right inequality of prices is already given by Lemma 2.
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Remark 1. We notice that B̄1 in Theorem 1 is determined by the density function g(y).
In specific, if we choose Merton’s model, we can obtain that B̄i = Kβ/(β − 1), where β is
the negative root of the equation

G(x) =
1

2
σ2
i x

2 + (ri − di − λiκ− 1

2
σ2
i )x− (ri + λi) + λie

µx+ 1
2
δ2x = 0.

If we choose Kou’s model, we can obtain that B̄i = K(θ2+1)γ1γ2/(θ2(γ1−1)(γ2−1)), where
γ1 > γ2, and they both are the negative roots of the equation

G(x) =
1

2
σ2
i x

2 +

(
ri − di − λiκ− 1

2
σ2
i

)
x− (ri + λi) + λi

(
qθ2

θ2 + x
+

pθ1
θ1 − x

)
= 0.

Since the values of B̄i have been given both in Merton’s model and Kou’s model, by
Theorem 1, we can directly use min{B̄1, B̄2} as the left truncation location of the prob-
lem (3), and obtain an exact left boundary condition with the payoff form. Naturally,
lnmin{B̄1, B̄2} shall be applied as the left truncation location of the problem (7) with an
exact boundary condition. For the empirical truncation estimation on the right of the prob-
lem (7), it has been shown that the error caused by the right-hand truncation decreases
exponentially pointwise with respect to lnS. Similarly, we choose L0 = ln 3K as the right-
hand truncation boundary [10], and the corresponding right boundary condition is set to
zero.

Combining the truncations of both sides, we truncate the infinite domain R to be [−L,L],
where L = max{− lnmin{B̄1, B̄2}, L0}. Therefore, we have the option pricing model on a
bounded domain as follows:

Liwi(x, τ) ≥ 0,
wi(x, τ)− w∗

i (x, τ ) ≥ 0,
Liwi(x, τ) · (wi(x, τ)− w∗

i (x, τ)) = 0,
wi(x, 0) = w∗

i (x, 0),
wi(−L, τ) = w∗

i (−L, τ),
wi(L, τ) = 0,

(15)

for i ∈ {1, 2}, where (x, τ) ∈ (−L,L)× (0, T ], w∗
i (x, τ) = e−ξiτ−ηix max{K − ex, 0}, and the

operator Li is given by:

Liwi(x, τ) =
∂wi

∂τ
− 1

2
σ2
i

∂2wi

∂x2
− αilwle

(ξl−ξi)τ+(ηl−ηi)x

− λi

ˆ eL−x

0

wi (x+ ln y, τ) g (y) yηidy, l = 3− i.

(16)

Remark 2. Although Theorem 1 is only proved under the assumption that r1 = r2 and
d1 = d2, we can also use this truncation technique in more general cases since the optimal
exercise boundary of permanent American option can guarantee the accuracy of the left-
hand side truncation and ln 3K provides a safeguard for the left-hand side truncation.

3 Numerical Discretization and Error Estimation
In this section, we will discuss the discretization of the option pricing problem (15) and ana-
lyze some properties of the discretization scheme. Also, we will establish the corresponding
error estimation in the last subsection.
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3.1 Discretized LCP
For numerical implementation, a composite trapezoidal formula and a finite difference
method will be used to deal with the integral term and differential terms in the operator Li,
respectively. Then, we will obtain a linear complementarity problem in finite dimension.

We advance some notations. Let Jτ and Ih stand for the temporal and spatial partition,
respectively. Specifically,

Jτ : 0 = τ0 < τ1 < · · · < τNt = T,

∆τ =
T

Nt

, τn = τ0 + n∆τ, n = 0, 1, · · · , Nt,

Ih : −L = x0 < x1 < · · · < xNx = L,

∆x =
2L

Nx

, xj = x0 + j∆x, j = 0, 1, · · · , Nx.

(17)

We use wn
i,j for the function value of wi(xj, τn), which is the exact solution of (15) at the

partition node (xj, τn), where i = 1, 2, j = 0, 1, . . . , Nx, and n = 0, 1, . . . , Nt. We also utilize
uni,j for the numerical solution in subsequence, which is the approximation of wn

i,j.
Considering the challenge of dealing with the integral term in Li, we design its dis-

cretization scheme first. In the case of Merton’s model, changing the variable ln y to z, the
integral term

Ii(x, τ) =

ˆ eL−x

0

wi (x+ ln y, τ) g (y) yηidy, (18)

could be rewritten as

Ii(x, τ) = Ci

ˆ L−x

−∞
wi (x+ z, τ) e−

(z−µ∗
i )

2

2δ2 dz,

where Ci = e(µηi−
1
2
δ2η2i )/(δ

√
2π) and µ∗

i = µ + δ2ηi. In addition, we use the composite
trapezoidal formula to approximate Ii(x, τ) at the point (xj, τn) as follows,

Ii(xj, τn) = Ci

Nx−1∑
k=0

ˆ (k−j+1)∆x

(k−j)∆x

wi(xj + z, τn)e
− (z−µ∗i )

2

2δ2 dz

+ Ci

ˆ −j∆x

−∞
w∗

i (xj + z, τn)e
− (z−µ∗

i )
2

2δ2 dz

≈ Ci∆x

2

Nx−1∑
k=0

[
uni,ke

− ((k−j)∆x−µ∗i )
2

2δ2 + uni,k+1e
− ((k−j+1)∆x−µ∗i )

2

2δ2

]
+Rn

i,j

=
Ci∆x

2
Φ⊤

i,jU
n
i +Rn

i,j,

(19)

where
Φi,j = (ϕi,j,0, 2ϕi,j,1, · · · , 2ϕi,j,Nx−1, ϕi,j,Nx)

⊤ ,

ϕi,j,k = e−
((k−j)∆x−µ∗i )

2

2δ2 , k = 0, 1, · · · , Nx,

Un
i =

(
uni,0, u

n
i,1, . . . , u

n
i,Nx

)⊤
,

Rn
i,j = Ci

ˆ −j∆x

−∞
w∗

i (xj + z, τn)e
− (z−µ∗i )

2

2δ2 dz.
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In particular, Rn
i,j can be written as

Rn
i,j = e−ηi(−L+j∆x)−ξiτn

(
Ke−δ2η2iNµ,δ2(−j∆x)− eµ+

1
2
δ2−L+j∆x−δ2η2iNµ+δ2,δ2(−j∆x)

)
,

where Na,b2(x) represents the cumulative distribution function of normal distribution with
mean a and variance b2.

In the case of Kou’s model, we employ the same variable substitution as for Merton’s
model and have the following approximation,

Ii(xj, τn) = qθ2

j−1∑
k=0

ˆ (k−j+1)∆x

(k−j)∆x

wi (xj + z, τn) e
(ηi+θ2)zdz

+ pθ1

Nx−1∑
k=j

ˆ (k−j+1)∆x

(k−j)∆x

wi (xj + z, τn) e
(ηi−θ1)zdz

+ qθ2

ˆ −j∆x

−∞
w∗

i (xj + z, τn) e
(ηi+θ2)zdz

≈ Q∆x

2

j−1∑
k=0

[
eQi,j,ku

n
i,k + eQi,j,k+1u

n
i,k+1

]
+
P∆x

2

Nx−1∑
k=j

[
ePi,j,ku

n
i,k + ePi,j,k+1u

n
i,k+1

]
+Rn

i,j

=
Ci∆x

2
Φ⊤

i,jU
n
i +Rn

i,j,

(20)

where Ci = 1,

Q = qθ2, eQi,j,k = e((ηi+θ2)(k−j)∆x),

P = pθ1, ePi,j,k = e((ηi+θ1)(k−j)∆x),

Φi,j =
[
QeQi,j,0, 2Qe

Q
i,j,1, . . . , 2Qe

Q
i,j,j−1,(

QeQi,j,j + PePi,j,j

)
, 2PePi,j,j+1, . . . , 2Pe

P
i,j,Nx−1, P e

P
i,j,Nx

]⊤
,

Rn
i,j = qθ2

ˆ −j∆x

−∞
w∗

i (xj + z, τn) e
(ηi+θ2)zdz.

Specifically, we can compute Rn
i,j by

Rn
i,j = qeηiL−ηij∆x−θ2j∆x−ξiτn

(
K − θ2

1 + θ2
e−L

)
.

It needs to notice that the values of the vector Φi,j, Ci and Rn
i,j in (19) and (20) are different,

and we write them in an invariant form for the subsequent analysis.
Now, we consider approximating the differential terms, which will be discretized by the

backward Euler method in the temporal direction and central difference quotient for the
second-order partial derivative in the spatial direction as follows,

∂wi

∂τ
(xj, τn+1) ≈

un+1
i,j − uni,j

∆τ
,

∂2wi

∂x2
(xj, τn+1) ≈

un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

(∆x)2
.

10



Based on the above approximations of the integral term and differential terms, we now
present the discretization of the option pricing problem (15) in point-by-point form, which
can be read as 

Liu
n+1
i,j ≥ 0,

un+1
i,j − un+1,∗

i,j ≥ 0,

Liu
n+1
i,j · (un+1

i,j − un+1,∗
i,j ) = 0,

u0i,j = u0,∗i,j ,
uni,0 = un,∗i,0 ,
uni,Nx

= 0,

(21)

for i = 1, 2, and any fixed (j, n), j = 1, 2, . . . , Nx − 1, n = 0, 1, . . . , Nt − 1, where un,∗i,j =

e−ξiτn−ηixj max{K − exj , 0}, and the operator Li is given by:

Liu
n+1
i,j =

un+1
i,j − uni,j

∆τ
− 1

2
σ2
i

un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

(∆x)2

− αile
((ξl−ξi)τn+(ηl−ηi)xj)unl,j − λi

(
Ci∆x

2
Φ⊤

i,jU
n
i +Rn

i,j

)
, l = 3− i.

(22)

Since the value at the boundary is known, for simplicity we denote the vector to be
solved in terms of Ūn = (Ūn

1 ; Ū
n
2 ), where

Ūn
i =

(
uni,1, u

n
i,2, . . . , u

n
i,Nx−1

)⊤
, i = 1, 2.

We should pay attention that Un = (Un
1 ;U

n
2 ) is a 2(Nx + 1)-dimensional vector while

Ūn = (Ūn
1 ; Ū

n
2 ) is a 2(Nx − 1)-dimensional vector.

Furthermore, let

Ūn,∗ =
(
Ūn,∗

1 ; Ūn,∗
2

)
=
(
un,∗1,1 , . . . , u

n,∗
1,Nx−1, u

n,∗
2,1 , . . . , u

n,∗
2,Nx−1

)⊤
.

β = ∆τ/(∆x)2, ρi = −αil∆τe
−(ηl−ηi)L+(ξl−ξi)n∆τ , i = 1, 2, l = 3− i,

and we can rewrite the discretized model (21) into a matrix-vector form as follows:
(
AŪn +BŪn+1 −∆τΦŪn + F , Ūn+1 − Ūn+1,∗) = 0,
AŪn +BŪn+1 −∆τΦŪn + F ≥ 0, Ūn+1 − Ūn+1,∗ ≥ 0,
Ū 0 = Ū 0,∗,

(23)

for n = 0, 1, . . . , Nt − 1, where

A =

(
−I A1

A2 −I

)
, Ai = ρi ·

 e(ηl−ηi)∆x

. . .
e(ηl−ηi)(Nx−1)∆x


(Nx−1)×(Nx−1)

,

B =

(
B1 O
O B2

)
, Bi =


1 + σ2

i β −σ2
i

2
β

−σ2
i

2
β

. . . . . .

. . . . . . −σ2
i

2
β

−σ2
i

2
β 1 + σ2

i β


(Nx−1)×(Nx−1)

,

Φ =

(
λ1Φ1 O
O λ2Φ2

)
, Φi(j, n) =

Ci

2
∆xΦi,j(n+ 1),

11



and the vector F = FD −∆τFc −∆τFI with

FD =

(
−σ

2
1β

2
un+1
1,0 , 0, . . . , 0,−

σ2
2β

2
un+1
2,0 , 0, · · · , 0

)⊤

,

Fc =
(
λ1R

n
1,1, . . . , λ1R

n
1,Nx−1, λ2R

n
2,1, · · · , λ2Rn

2,Nx−1

)⊤
,

FI =
∆x

2

(
λ1C1u

n
1,0(Φ1,1(1), · · · ,Φ1,Nx−1(1)), λ2C2u

n
2,0(Φ2,1(1), · · · ,Φ2,Nx−1(1))

)⊤
.

Let F
(
Ūn
)
= AŪn − ∆τΦŪn + F , and the problem (23) can be reformulated into the

following form: 
(
BŪn+1 + F

(
Ūn
)
, Ūn+1 − Ūn+1,∗) = 0,

BŪn+1 + F
(
Ūn
)
≥ 0, Ūn+1 − Ūn+1,∗ ≥ 0,

Ū 0 = Ū 0,∗.
(24)

Remark 3. It is clear that for given Ūn, the problem (24) is a linear complementarity
problem (LCP) with respect to Ūn+1. By the definition of the matrix B in (23), it is easy
to check B is symmetric and strictly diagonally dominant, and the elements on the diagonal
of the matrix B are all positive. Thus, the matrix B is positive definite. Moreover, we can
get the uniqueness of the solution of the LCP (24) by the work in [11], which implies the
LCP (21) is well posed.

Remark 4. It should be paid attention that our discretized model (24) can be extended
to the case where the number of regime is greater than or equal to 3. Suppose we have
Q regimes in our discretized model (24), where Q ≥ 3. Then the discretized matrix B
will become a RQ(Nx−1)×Q(Nx−1) matrix and the vector Ūn will become a RQ(Nx−1)×1 vector.
Their specific formulae are as follows

B =


B1

. . .
Bi

. . .
BQ

 , Bi =


1 + σ2

i β −σ2
i
2 β

−σ2
i
2 β

. . . . . .

. . . . . . −σ2
i
2 β

−σ2
i
2 β 1 + σ2

i β


(Nx−1)×(Nx−1)

,

Ūn =
(
Ūn

1 ; · · · ; Ūn
i ; · · · ; Ūn

Q
)
=
(
un1,1, . . . , u

n
1,Nx−1, · · · , uni,1, . . . , uni,Nx−1, · · · , unQ,1, . . . , u

n
Q,Nx−1

)⊤
.

And the corresponding changes to F
(
Ūn
)

and Ūn,∗ are in the same way. In fact, based
on the structure of B, the discretized model (24) with Q regimes could be decomposed
into Q subproblems and solve them in parallel. Therefore, the increase in the number of
regime will not increase the dimension of the subproblem, which leads to a small increase
in computation time.

3.2 Stability, Monotonicity, and Consistency
In this subsection, we will verify the stability, monotonicity, and consistency of the dis-
cretization scheme. We first start with the stability analysis.

Theorem 2. Given the temporal and spatial partitions by (17), the discretized model (21)
is stable for initial value, which means that there is a constant C satisfying

∥Un+1∥∞ ≤ C∥U 0∥∞, ∀ n ∈ {0, 1, · · · , Nt − 1}. (25)

12



Proof. Letm = argmax0≤j≤Nx

{
max{|un+1

1,j |, |un+1
2,j |}

}
, according to the nonnegativity of un+1

i,j ,
it has ∥Un+1∥∞ = max{un+1

1,m , u
n+1
2,m }. Without loss of generality, we assume ∥Un+1∥∞ =

un+1
1,m . Observing the discretized model (21), we divide the value of un+1

1,m into two cases to
discuss the stability of the numerical scheme.

On the one hand, if un+1
1,m = un+1,∗

1,m , then

∥Un+1∥∞ = un+1,∗
1,m

= e−ξ1τn+1−η1xm max{K − exm , 0}
= e−ξ1∆τe−ξ1τn−η1xm max{K − exm , 0}
= e−ξ1∆τun,∗1,m

≤ max{e−ξ1∆τ , e−ξ2∆τ}un,∗1,m

≤ e−ξ∗∆τ∥Un∥∞,

(26)

where ξ∗ = min{ξ1, ξ2}.
On the other hand, if un+1

1,m > un+1,∗
1,m and satisfies L1u

n+1
i,m = 0, by applying the definition

of the operator Li in (22), it has

un+1
1,m − un1,m−

1

2
σ2
1β(u

n+1
1,m+1 − 2un+1

1,m + un+1
1,m−1)− α12∆τe

((ξ2−ξ1)τn+(η2−η1)xm)un2,m

− λ1∆τR
n
1,m − λ1C1∆τ∆x

2
Φ⊤

1,mU
n
1 = 0.

Then, using the triangle inequality, we have(
1 + σ2

1β
)
∥Un+1∥∞

=∥σ
2
1

2
β
(
un+1
1,m−1 + un+1

1,m+1

)
+ un1,m + α12∆τe

((ξ2−ξ1)τn+(η2−η1)xm)un2,m

+ λ1∆τR
n
1,m +

λ1C1∆τ∆x

2
Φ⊤

1,mU
n
1 ∥∞

≤σ2
1β∥Un+1∥∞ + ∥Un∥∞ + α12∆τe

((ξ2−ξ1)τn+(η2−η1)xm)∥Un∥∞

+ λ1∆τR
n
1,m + λ1∆τ∥

C1∆x

2
Φ⊤

1,mU
n∥∞

≤σ2
1β∥Un+1∥∞ + ∥Un∥∞ + C∗∆τ∥Un∥∞

+ λ1∆τR
n
1,m + λ1∆τ∥

C1∆x

2
Φ⊤

1,mU
n∥∞,

(27)

where C∗ is a constant that only depends on the bounded solving domain and satisfies

|αi,3−ie
((ξ3−i−ξi)τn+(η3−i−ηi)xm)| ≤ C∗, i = 1, 2.

For the fourth term on the right of the inequality (27), by using the property of the proba-
bility density function g(y), we have

Rn
i,j ≤ sup

y∈(0,e−L−xj ]

|w∗
i (xj + ln y, τn)y

ηi |
ˆ e−L−xj

0

g(y)dy

≤ ∥Un∥∞ sup
y∈(0,e−L−xj ]

|yηi |

≤ I∗∥Un∥∞,
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where I∗ = max{e−2η1L, e−2η2L, 1}. Now, we deal with the last term on the right of the
inequality (27). Because all the elements of the vector Φi,j are positive, let

MΦ = max
0≤j≤Nx

{
max

(
C1∆x

2
Φ⊤

1,j,
C2∆x

2
Φ⊤

2,j

)}
,

then we could get
∥C1∆x

2
Φ⊤

1,mU
n∥∞ ≤MΦ∥Un∥∞.

Therefore, according to above scalings, it has

∥Un+1∥∞ ≤ (1 +H∆τ) ∥Un∥∞. (28)

Here, H = C∗ + (MΦ + I∗)max{λ1, λ2}.
Further, combining (26) and (28), we have

∥Un+1∥∞ ≤ max{e−ξ∗∆τ , (1 +H∆τ)}∥Un∥∞,

which yields
∥Un+1∥∞ ≤

(
max{e−ξ∗∆τ , (1 +H∆τ)}

)n+1 ∥U 0∥∞
= max{e−ξ∗(n+1)∆τ , (1 +H∆τ)n+1}∥U 0∥∞.

According to Bernoulli inequality, we know that

max{e−ξ∗(n+1)∆τ , (1 +H∆τ)n+1} ≤ max

{
e−ξ∗T , lim

n→+∞

(
1 +

HT

n+ 1

)n+1
}

= max{e−ξ∗T , eHT}.

Finally, let C = max{e−ξ∗T , eHT}, we could get the estimation (25).

Next, we begin our analysis of the monotonicity with the following notations. Let

φj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
= aun+1

i,j − bun+1
i,j−1 − bun+1

i,j+1 − Fj (U
n) , 1 ≤ j ≤ Nx − 1,

where a = 1 + σ2
i β, b = σ2

i β/2, and

Fj (U
n) =

λi∆τCi∆x

2
Φ⊤

i,jU
n
i + uni,j + αi,3−i∆τe

(η3−i−ηi)xj+(ξ3−i−ξi)τnun3−i,j + λi∆τR
n
i,j.

For any j = 1, · · · , Nx − 1, defining

ψj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
= min

(
φj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
, un+1

i,j − un+1,∗
i,j

)
,

we can reformulate the discretization scheme in (21) into the form of

ψj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
= 0, j = 1, · · · , Nx − 1, (29)

and deduce the following result.
Theorem 3. The discretization scheme in (29) is monotone and independent of the parti-
tions {Jτ} and {Ih} in (17), namely, it holds that

ψj

(
un+1
i,j , un+1

i,j−1 + ε1, u
n+1
i,j+1 + ε2,U

n + ε3e2(Nx+1)

)
≤ψj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
, ∀ε1 ≥ 0, ε2 ≥ 0, ε3 ≥ 0;

ψj

(
un+1
i,j + ε, un+1

i,j−1, u
n+1
i,j+1,U

n
)

≥ψj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
, ∀ε ≥ 0,

where e denotes the vector where all the entries are ones.
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Proof. For any ε1 ≥ 0, ε2 ≥ 0, ε3 ≥ 0, we have

φj

(
un+1
i,j , un+1

i,j−1 + ε1, u
n+1
i,j+1 + ε2,U

n + ε3e2(Nx+1)

)
=φj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
− bε1 − bε2

− λi∆τCi∆x

2
Φ⊤

i,jeNx+1ε3 − (1 + αil∆τe
(ηl−ηi)xj+(ξl−ξi)τn)ε3

≤φj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
,

According to the definition of ψj, we have

ψj

(
un+1
i,j , un+1

i,j−1 + ε1, u
n+1
i,j+1 + ε2,U

n + ε3e2(Nx+1)

)
≤ ψj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
.

In addition, by using the nonnegative complementarity condition in (21), for any ε ≥ 0, it
has

ψj

(
un+1
i,j + ε, un+1

i,j−1, u
n+1
i,j+1,U

n
)

=min
(
φj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
+ aε, un+1

i,j + ε− un+1,∗
i,j

)
≥min

(
φj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
, un+1

i,j − un+1,∗
i,j

)
=ψj

(
un+1
i,j , un+1

i,j−1, u
n+1
i,j+1,U

n
)
.

The proof of monotonicity is completed.

At the end of this subsection, we present the consistency of the discretization scheme by
the following result.
Theorem 4. Suppose that the probability density function g(y) in (2) is continuous almost
everywhere (regardless of the set of all partition points). Then the discretization scheme
defined in (22) is consistent with the theoretical operator Li for i = 1, 2, which means the
numerical scheme (21) is consistent with the continuous model (15). Moreover, if g(y) is
twice continuously differentiable almost everywhere (regardless of the set of all partition
points), then the truncation error will be O (∆τ +∆x2) pointwisely.
Proof. The truncation error Υn+1

i,j of the difference scheme (22) is given by:

Υn+1
i,j =Liw

n+1
i,j − Liwi(xj, τn+1)

=−λi
(
Ci∆x

2
Φ⊤

i,jW
n
i +Rn

i,j

)
+

1

∆τ
(wn+1

i,j − wn
i,j −

1

2
σ2
i βδ

2
xw

n+1
i,j

−∆ταilw
n
l,je

((ξl−ξi)τn+(ηl−ηi)xj)
)
− Liwi(xj, τn+1), l = 3− i,

(30)

where W n
i =

(
wn

i,0, w
n
i,1, . . . , w

n
i,Nx

)⊤ and δ2xw
n+1
i,j = wn+1

i,j+1 − 2wn+1
i,j + wn+1

i,j−1. From Theorem
3.2 of [14], the solution of problem (15) is continuously differentiable in temporal direction
and twice continuously differentiable in spatial direction over the interior of the domain.
Therefore, by Taylor expansion, we have

Υn+1
i,j = λi

ˆ L−xj

−L−xj

wi (xj + z, τn) g (e
z) e(ηi+1)zdz − λi

Ci∆x

2
Φ⊤

i,jW
n
i

+O (∆τ) +O
(
∆x2

)
.

(31)

which, in view of the continuity of g(y), the consistency is meet by

lim
(∆τ,∆x)→(0,0)

Υn+1
i,j = 0.

Additionally, with the above observation, we can obtain that Υn+1
i,j = O (∆τ +∆x2) if

g(y) is twice continuously differentiable almost everywhere.
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Remark 5. We notice that the continuous problem (15) satisfies the strong comparison
principle [14]. Thus the numerical scheme converges to the viscosity solution of the corre-
sponding problem [5] by the stability, monotonicity, and consistency above.

3.3 Error Estimation
In this subsection, we will provide the error estimation of the discretization scheme grounded
on the previous analysis in subsection 3.2. First, we deliver the equivalent variational in-
equality problems of problems (15) and (24) by some derivation and the available result,
respectively, then state our result of the error estimation.

Lemma 4. Let Vi,τ (i = 1, 2) be the sets defined as

Vi,τ =

{
v ∈ C2,1 :

v(x, τ) ≥ w∗
i (x, τ), ∀(x, τ) ∈ (L,L)× (0, T ];

v(−L, τ) = w∗
i (−L, τ), v(L, τ) = w∗

i (L, τ), ∀τ ∈ (0, T ]

}
,

then the problem (15) is equivalent to the following variational inequality problem,
Find wi ∈ Vi,τ (i = 1, 2) such that for any v ∈ Vi,τ ,{

Liwi(x, τ) · (v(x, τ )− wi(x, τ)) ≥ 0, ∀ (x, τ) ∈ (−L,L)× (0, T ],
wi(x, 0) = w∗

i (x, 0), ∀ x ∈ (−L,L). (32)

Proof. For the necessity, let wi(i = 1, 2) be the solution to problem (15), then we can directly
have wi ∈ Vi,τ and wi(x, 0) = w∗

i (x, 0). If wi > w∗
i at (x, τ ), then from complementarity

condition in (15) we have Liwi(x, τ) = 0, which yields the inequality in (32). If wi = w∗
i at

(x, τ), then for any v ∈ Vi,τ we have v−wi ≥ 0 at (x, τ ). Using the inequality Liwi(x, τ ) ≥ 0
in (15), we can get the inequality in (32).

On the other hand, if wi(i = 1, 2) is the solution to problem (32), then we only need to
verify Liwi ≥ 0 and Liwi(wi − w∗

i ) = 0. Similarly, if wi > w∗
i at (x, τ ), let v = (wi + w∗

i )/2
and w∗

i successively, which directly yields Liwi(x, τ) = 0 and the complementarity condition.
If wi = w∗

i at (x, τ ), then it is trivial to finish the proof by using the inequality in (32).

Lemma 5 (cf. [11]). LCP (24) is equivalent to the variational inequality problem{ (
BŪn+1 + F

(
Ūn
)
,V − Ūn+1

)
≥ 0, ∀ V ≥ Ūn+1,∗,

Ū 0 = Ū 0,∗.
(33)

Theorem 5. Let {wi(x, τ), i = 1, 2} and {Ūn, n = 0, 1, . . . , Nt} be the solutions of problem
(15) and problem (24), respectively. Then we can give the following error estimation in
discrete L2-norm:

∥∥ŪNt − W̄Nt
∥∥
h
=

(
Nx−1∑
j=1

∆x
(∣∣uNt

1,j − wNt
1,j

∣∣2 + ∣∣uNt
2,j − wNt

2,j

∣∣2)) 1
2

= O
(
∆τ +∆x2

)
,

(34)

where W̄ n = (wn
1,1, . . . , w

n
1,Nx−1, w

n
2,1, . . . , w

n
2,Nx−1)

⊤.

Proof. From Lemma 4 and the definition of truncation error in (30), it follows that(
BW̄ n+1 + F

(
W̄ n

)
−∆τΥn+1,V − W̄ n+1

)
≥ 0, ∀ V ≥ Ūn+1,∗, (35)
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for n = 0, 1, . . . , Nt−1, where Υn+1 =
(
Υn+1

1,1 , . . . ,Υ
n+1
1,Nx−1,Υ

n+1
2,1 , . . . ,Υ

n+1
1,Nx−1

)⊤ and Υn+1
i,j =

O(∆τ +∆x2), which has been proved in Theorem 4.
Let εn+1 = W̄ n+1 − Ūn+1. With V = W̄ n+1 and V = Ūn+1 in (33) and (35), respec-

tively, we can obtain that(
Bεn+1, εn+1

)
=
(
BW̄ n+1, W̄ n+1 − Ūn+1

)
−
(
BŪn+1, W̄ n+1 − Ūn+1

)
≤
(
−F

(
W̄ n

)
+∆τΥn+1, W̄ n+1 − Ūn+1

)
−
(
−F

(
Ūn
)
, W̄ n+1 − Ūn+1

)
=
(
F
(
Ūn
)
− F

(
W̄ n

)
+∆τΥn+1, W̄ n+1 − Ūn+1

)
=
(
(−A+∆τΦ) εn +∆τΥn+1, εn+1

)
≤ (1 + ∆τ(D∗ +R∗))∥εn∥∥εn+1∥+∆τ∥Υn+1∥∥εn+1∥,

(36)
where D∗ = max{|α12| , |α21|}eL|η2−η1|+T |ξ2−ξ1| and

R∗ =

{
max{λ1C1, λ2C2}∆x, (Merton’s model)
max{λ1, λ2}max{qθ2, pθ1}e2L(max{θ1,θ2}+max{η1,η2})∆x, (Kou’s model)

Moreover, it holds that (
Bεn+1, εn+1

)
≥ λmin∥εn+1∥2, (37)

where λmin is the minimum eigenvalue of the positive definite matrix B.
Combing the inequalities (36) and (37), let G∗ = D∗ +R∗, and we have

∥εNt∥ ≤ 1 +G∗∆τ

λmin

∥εNt−1∥+ ∆τ

λmin

∥ΥNt∥

≤
(
1 +G∗∆τ

λmin

)Nt

∥ε0∥+

(
Nt−1∑
k=0

(
1 +G∗∆τ

λmin

)k
)

∆τ

λmin

∥ΥNt∥

=

(
Nt−1∑
k=0

(
1 +G∗∆τ

λmin

)k
)

∆τ

λmin

∥ΥNt∥.

(38)

Now, we are going to check the boundedness of the coefficient of the right-hand term
in (38).

By the property of tridiagonal pseudo-Toeplitz matrices [26], all eigenvalues of the matrix
Bi(i = 1, 2) can be expressed as

λk = 1 + σ2
i β(1− cos(kπ/Nx)), k = 1, . . . , Nx − 1,

and we can get

λmin = 1 + σ2
∗β(1− cos(

π

Nx

)) = 1 + σ2
∗∆τ(

π2

8L2
+ o(∆x)),

with σ∗ = max{σ1, σ2}. If (1 +G∗∆τ)/λmin ≥ 1, we have

T

2
≤

(
Nt−1∑
k=0

(
1 +G∗∆τ

λmin

)k
)

∆τ

λmin

≤ T (1 +G∗∆τ)Nt ≤ TeG
∗T , (39)

otherwise,

Te−(
σ2
∗π

2

4L2 )T ≤

(
Nt−1∑
k=0

(
1 +G∗∆τ

λmin

)k
)

∆τ

λmin

≤ T. (40)

With the above observations, we can verify the desired boundedness, which completes the
proof.
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4 Numerical Experiments
In this section, we report some numerical results to show the performance of the proposed
scheme. We first specify the made-to-order projection and contraction method for solving
the discretized problem (24), then verify the efficiency of our scheme. All the experiments
are performed in MATLAB (version R2022a) on an Intel Core i7 CPU of 2.10 GHz.

4.1 Implementation with Projection and Contraction Method
To simplify the format of the algorithm, let Ũn+1 = Ūn+1 − Ūn+1,∗ and F̃ n+1 = F (Ūn) +
BŪn+1,∗, and the model (24) can be represented by a standard LCP:

(
BŨn+1 + F̃ n+1, Ũn+1

)
= 0,

BŨn+1 + F̃ n+1 ≥ 0, Ũn+1 ≥ 0,

Ũ 0 = 0.

(41)

Following we shall introduce an efficient projection and contraction method (PCM, [20]) to
solve the LCP (41).

Let Ω =
{
Ũn+1 ∈ R2(Nx−1) | Ũn+1 ⩾ 0

}
, and define the projector PΩ(Ũ

n+1) as follows

PΩ(Ũ
n+1) = argmin

v∈Ω
∥Ũn+1 − v∥2 = max{Ũn+1, 0}.

Then one can verify that solving the LCP (41) is equivalent to finding the zero point of the
function

e(Ũn+1) = Ũn+1 − PΩ

[
Ũn+1 −

(
BŨn+1 + F̃ n+1

)]
.

Now, we introduce the framework of PCM to solve the above nonlinear equation as Algo-
rithm 1.
Algorithm 1 Framework of PCM

1: Input: Ũn, F̃ n+1,
2: Output: Ũn+1.
3: Let Ũ (0) = Ũn,
4: for k = 0, 1, . . . do
5: if e(Ũ (k)) ̸= 0 then
6: d(Ũ (k)) =

(
B⊤ + I

)
e(Ũ (k)),

7: ρ(Ũ (k)) = ∥e(Ũ (k))∥2/∥d(Ũ (k))∥2,
8: Ũ (k+1) = Ũ (k) − ρ(Ũ (k))d(Ũ (k)).
9: end if

10: Ũn+1 = Ũ (k+1).
11: end for

Adding some acceleration skills to Algorithm 1, we can improve its efficiency and ro-
bustness. And we apply Algorithm 2 to solve the LCP (41) in practice.

Algorithm 2 Practical PCM

1: Input: Ũn, F̃ n+1, ν ∈ (0, 1), µ ∈ (0, 1), ϱ ∈ (1, 2), ε = 10−9,
2: Output: Ũn+1.
3: Let k = 0, β(0) = 1,
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4: Ũ = Ũn,Fu = BŨ + F̃ n+1,
5: tol = abs

(
Ũ −max

(
Ũ − Fu, 0

))
.

6: while (tol > ε) do
7: Ũ (k) = Ũ ,F

(k)
u = Fu, Ũ = max

(
Ũ (k) − β(k)F

(k)
u , 0

)
,

8: Fu = BŨ + F̃ n+1,
9: du = Ũ (k) − Ũ ,dF = β(k)

(
F

(k)
u − Fu

)
, ρ(k) = ∥dF∥/∥du∥.

10: while (ρ(k) > ν) do
11: β(k) = 2

3
β(k) min

(
1, 1/ρ(k)

)
, Ũ = max

(
Ũ (k) − β(k)F

(k)
u , 0

)
,

12: Fu = BŨ + F̃ n+1,
13: du = Ũ (k) − Ũ ,dF = β(k)

(
F

(k)
u − Fu

)
, ρ(k) = ∥dF∥/∥du∥.

14: end while
15: duF = du + dF , ν1 = d⊤

udu, ν2 = d⊤
uFduF , α∗ = ν1/ν2,

16: Ũ = Ũ (k) − α∗ϱduF ,Fu = BŨ + F̃ n+1,
17: tol = abs

(
Ũ −max

(
Ũ − Fu, 0

))
.

18: if (ρ(k) < µ) then
19: β(k) = β(k) ∗ ϱ.
20: end if
21: k = k + 1 and β(k) = β(k−1).
22: end while
23: Let Ũn+1 = Ũ .

We now bring some details of implementing Algorithm 2. Recall the matrix-vector form
(23) in subsection 3.1, the computation of the approximate integral ΦiŪ

n
i usually requires

O (N2) operations. However, after observing Φi is a Toeplitz matrix and converting the
matrix-vector multiplication into a fast Fourier transformation form [2], the operations could
be reduced to O (N logN) in the case that N is the power of 2. Unfortunately, in our regime-
switching model the degree of freedom N will always be in a form of 2k − 1 where k is an
integer, and we find that there is almost no difference between employing this trick and
directly computing the matrix-vector multiplication in MATLAB.

4.2 Numerical Examples
In this part, we first demonstrate the effectiveness of our method (Finite Difference with
Projection and Contraction Method: FDPCM) with the Radial Basis Collocation Method
(RBCM) [6] as an indicator, and give 3-D plots of the option prices. Then we illustrate the
results in Theorem 1 and verify the convergence order in Theorem 5. Finally, we show the
efficiency of our method by making a comparison with RBCM.

We consider an one-year (T = 1) American put option under regime-switching jump-
diffusion models and give two numerical examples as follows:

• Example 1 (Merton’s model):

σ =

(
0.8
0.3

)
, r =

(
0.05
0.05

)
, d =

(
0.025
0.025

)
, λ =

(
0.25
0.20

)
, K = 1,

µ = −0.025, δ =
√
0.05, A =

(
−2 2
3 −3

)
,

L = 2.0747.
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• Example 2 (Kou’s model):

σ =

(
0.8
0.3

)
, r =

(
0.05
0.05

)
, d =

(
0.025
0.025

)
, λ =

(
0.25
0.20

)
, K = 1,

θ1 = 3.0465, θ2 = 3.0775, p = 0.3445, A =

(
−2 2
3 −3

)
,

L = 2.1188.

Besides, the parameters in Algorithm 2 are set as ν = 0.9, µ = 0.4, ρ = 1.5, ε = 10−8. Since
the effectiveness of RBCM has been shown in [6], we compare our method FDPCM with it
under the same spatial and temporal partition (Nx = 256, Nt = 500).
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Figure 1: The option prices Pi(S, 0) (i = 1, 2) in Example 1 and Example 2.

The result from Figure 1 shows that the gap between the solutions of option prices at
t = 0 by FDPCM and RBCM is acceptable in either Example 1 or Example 2, which means
that FDPCM is a feasible method to solve the option pricing problem. Figures 2 and 3 show
the 3-D plots of option prices in Example 1 and Example 2, respectively.

Figure 2: The option prices Pi(S, 0) (i = 1, 2) for Example 1.
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Figure 3: The option prices Pi(S, 0) (i = 1, 2) for Example 2.

Also, we present the optimal exercise boundaries of the two concerned examples in Fig-
ure 4. The numerical results visually illustrate the inequality in Theorem 1.
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Figure 4: Optimal exercise boundaries stated in Theorem 1 for Example 1 and Example 2.

Next, we check the convergence order of our methods. As there is no closed-form solution
for American put options under regime-switching jump-diffusion models, we use the numer-
ical results obtained by FDPCM with an adequately fine mesh as the benchmarks where the
mesh ratio (∆x)2/∆t is fixed at 0.8. Thus, for Example 1, we choose Nx = 1024, Nt = 48720;
for Example 2, we choose Nx = 1024, Nt = 46716. First, we verify the convergence order in
the spatial direction and fix Nt = 48720 and Nt = 46716 in Example 1 and 2 respectively
to reduce the influence from the temporal direction. Figure 5 shows that the convergence
order in the spatial direction is of order 2, which matches our estimation in Theorem 5.
Further, we verify the convergence order in the temporal direction and fix Nx = 1024 to
reduce the influence from the spatial direction. Figure 6 shows that the convergence order
in the spatial direction is of order 1, which also matches our estimation in Theorem 5. It
should be mentioned that we translated the data of log(error) of regime 2 for clarity in
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Figure 5 and Figure 6.
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Figure 5: Convergence order in spatial direction under Example 1 and Example 2.
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Figure 6: Convergence order in temporal direction under Example 1 and Example 2.

The last experiment devotes to verifying the efficiency of our method. We compare the
error and running time of FDPCM and RBCM with the same partition (still fix the mesh
ratio (∆x)2/∆t = 0.8). Specifically, we use discrete L2-norm defined in Theorem 5 for
computing the error. The results in Table 1 indicate that our FDPCM is more competitive
than RBCM.

Table 1: The errors of P (S, 0) and computational costs for FDPCM and RBCM.

Example Nx Nt Error (10−4) Time (s)
FDPCM RBCM FDPCM RBCM FDPCM RBCM FDPCM RBCM

1 256 256 3045 3045 3.25 5.82 11.12 17.35
2 256 256 2920 2920 4.22 4.63 9.88 20.50
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5 Conclusions
This paper proposes an efficient numerical method for evaluating American options under
regime-switching jump-diffusion models. By the relation of optimal exercise boundaries
among several options, a simplified model defined on a bounded domain is first presented
to approximate the original model defined on an unbounded domain. Then a composite
trapezoidal formula and a finite difference method are applied to discretize the simplified
model to be an LCP in finite dimensional space. Sequentially, we established the stability,
monotonicity, consistency, and error estimation of the numerical scheme. Furthermore,
based on the characteristics of the discretized matrix, a projection and contraction method
is proposed to solve the LCP. Finally, several numerical simulations are carried out to verify
the proposed method’s theoretical analysis and efficiency.
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