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Abstract

Direct-search methods are a major class in derivative-free optimization. The combination
of direct search and randomization techniques leads to an efficient variant, namely probabilistic
direct search. Its convergence analysis has been thoroughly explored in recent years under
the probabilistic descent assumption. However, a natural question arises: how will this
algorithm behave when assumptions for convergence are not met? In this paper, we analyze
the non-convergence of the algorithm when the polling directions form probabilistic ascent
sets. Its analysis is closely related to the discussion of a random series. We further show that
our non-convergence analysis is tight. Our non-convergence theory completes the analytical
framework for the probabilistic direct search, guiding the selection of the polling directions in

practice.

Keywords: Derivative-free optimization, Direct search, Probabilistic method, Non-convergence

analysis

1 Introduction

When will your algorithm fail to converge? This question is arguably as important as asking when
it will converge, but is often not studied as much. A systematic investigation of this question
may deepen our understanding about the behavior of the algorithm, guide its implementation
in practice, and provide new perspectives on its convergence analysis. Our paper will address
this question for the probabilistic direct search method [17] for the unconstrained optimization
problem

min f(z), (1.1)

where f: R™ — R is a smooth and convex function.
Direct search [21] is a class of derivative-free optimization (DFO) methods. They define

iterates based on comparisons of function values sampled following a certain scheme without
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explicitly building models for the objective or constraint functions. There are several types of
direct search methods, and we will focus on the directional direct search based on sufficient
decrease [14, Section 7.7] for solving (1.1). In the worst case, the deterministic version of
this method needs to evaluate at least n + 1 function values at each iteration, which becomes
impractical when n is modestly large. To overcome this difficulty, Gratton et al. [17] propose
a randomized version of this method, which we will refer to as the probabilistic direct search.
They show that given shrinking factor 8 and expanding factor -, the algorithm enjoys global
convergence if the sequence of polling direction sets is a sequence of pg-probabilistic k-descent

sets with some positive x and
log 6
= —. 1.2
P gy 16) 2
In particular, if v > 1 and we choose each polling direction set to be a collection of m independent
random directions following the uniform distribution on the unit sphere, which is the typical

choice in practice [17], then a sufficient condition for global convergence is

log 0
m>log2<1—0g>.
log v

This result not only provides more choices of polling direction sets for direct search, but also
guides the analysis of the probabilistic trust-region model [18].

A natural question arises: what will happen if m < logy(1 — log6/log~)? Furthermore,
we would like to ask: is the pg-probabilistic k-descent assumption essential for the conver-
gence of probabilistic direct search? From a broader perspective, we are interested in whether
“submartingale-like” assumptions are essential, which were first introduced in [3] and are widely
used in the convergence analysis of stochastic oracles including randomized versions (some called
probabilistic models) of optimization methods such as trust region [3, 37], line search [5, §],
and cubic regularization [8]. These questions are both theoretically interesting and practically
meaningful, as the answers will provide a complete view of the behavior of probabilistic models
and guide the selection of algorithmic parameters in practice.

In this paper, we answer the first two questions as a first step. We establish the non-
convergence theory of probabilistic direct search and prove that the algorithm will not converge if
the sequence of polling direction sets is a sequence of p-probabilistic ascent sets (Definition 3.1)
with p > 1 — pg and the objective function is smooth and convex. In particular, for the

above-mentioned typical case, the algorithm will not be globally convergent if

log 6
— . 1.
m < logy <1 log’y> (1.3)

It is still an open question whether the algorithm will converge when inequality (1.3) becomes
an equality, although logs(1 —log6/log~y) is not an integer in most cases.
The remaining part of this paper is organized as follows. In Section 2, we provide a concise

review of DFO and introduce the necessary concepts of probabilistic direct search. Section 3



establishes the non-convergence theory, forming the main ideas of this paper. Additionally, we
show that the probabilistic direct search with typical polling direction sets will not converge
if m <logy(1 — logf/log~) by our non-convergence result. Moreover, we construct an example
to demonstrate that our probabilistic ascent assumption with p > 1 — pg cannot be weakened
to p > 1 — pg. A relaxation of the probabilistic ascent assumption is later discussed. We extend
our non-convergence results to the nonsmooth case in Section 4. We summarize our findings and

draw conclusions in Section 5.

2 Preliminaries

To put our research in context, we briefly review the landscape of DFO, which in recent decades
has aroused great interest in both academic research and practical applications [2, 14, 22]. Within
the existing body of literature, DFO methods are broadly classified into two primary categories:
direct-search methods and model-based methods. Detailed discussions about direct-search
methods can be found in [21], and notable examples of direct search include the Nelder-Mead
simplex method [25], the MADS methods [1, 23], and BFO [26, 27]. In contrast to direct-search
methods using simple comparisons of function values, model-based methods construct local
models through sampling under a trust-region [13] or line-search [4] framework. A wealth of
classical literature on model-based methods can be found in, for example, [4, 13, 29, 30, 31, 32],
with some well-known methods and software in this category including Powell’s methods and
PDFO [33]. Recently, randomization techniques are introduced to both categories, and we refer
to [3, 6, 7, 17, 18, 19].

In what follows, we review the framework of probabilistic direct search and introduce the
necessary notations. Subsection 2.1 introduces the fundamental framework of direct search based
on sufficient decrease, whereas Subsection 2.2 concentrates on the randomization techniques

inherent in this framework along with the convergence theory.

2.1 Direct search based on sufficient decrease

Algorithm 2.1 presents a direct search method for solving problem (1.1). Inequality (2.1) is called
the sufficient decrease condition, where the forcing function p : (0,00) — (0, 00) is nondecreasing
and p(a) = o(a) when o — 07, a typical choice being p(a) = ca?/2 with a positive constant c.

Step 2 of Algorithm 2.1 is known as polling [14, Chapter 7], and the directions in Dy, are
called the polling directions. In practice, a search step may be taken at the beginning of each

iteration (see [21, Algorithm 3.2]). As in [17], we omit such an option and focus on polling.

Remark 2.1. To implement Algorithm 2.1, a polling strategy is needed to choose the direction dy,
if there are multiple candidates satisfying (2.1). Two common strategies exist. One is to choose
the direction that decreases the function value the most (pick the first in case of a tie), which is

called complete polling. The other is to take the first direction fulfilling (2.1), which is known as



Algorithm 2.1 Deterministic direct search based on sufficient decrease
Select zp € R™, a9 > 0, 6 € (0,1), v € [1,00), and a forcing function p.
For £k =0,1,2,..., do the following.

1. Generate a set of directions Dy C R” deterministically.
2. If there exists a direction dj, € D}, such that

flz) — flrg + ardi) > plag), (2.1)

then set xx+1 = x + ard, arr1 = yag; otherwise, set xx11 = x, ar+1 = dag.

opportunistic polling. We also need to set an order for evaluating {f(xy + aid) : d € Dy} in the
polling. A strategy suggested in [15, Section 4] is to decide the order by an oracle that can help
us rank the decreases of f along the polling directions, the oracle in [15] being an approximate
descent direction (called a descent indicator). For generality, Algorithm 2.1 deliberately keeps the

strategies of polling and ordering unspecified.
The analysis of Algorithm 2.1 depends on the concept of the cosine measure defined below.

Definition 2.1 (Cosine measure). Let D be a finite and nonempty set of nonzero vectors in R™.
The cosine measure of the set D with respect to a nonzero vector v, denoted by cm(D,v), is
defined as

dTv
cm(D,v) = max ———-,
deD ||d] ]
where || - || is the Euclidean norm. In addition, the cosine measure of the set D, denoted by cm(D),

is defined as cm(D) = min,egn\ o) cm(D, v).

Remark 2.2. Definition 2.1 does not specify the value of cm(-,0). As a convention, we
suppose that it is defined to be a constant in [—1,1] (e.g., [17] defines cm(-,0) =1). We do not
particularize this constant, because its value will not affect our non-convergence analysis. See

Remark 3.2 for more details.

If f is smooth and there exists a constant k£ > 0 such that cm(Dy) > & for each k > 0, then

Algorithm 2.1 converges under some technical assumptions. See [21, Theorem 3.11].

2.2 Probabilistic direct search and its convergence

Algorithm 2.2 presents the probabilistic direct search method, which was initially proposed in [17].
It is the same as Algorithm 2.1 except that the polling directions in Step 1 are random vectors
over a probability space (€2, F,P). Consequently, the iterates and the step sizes are also random

in general, although the starting point and the initial step size are still chosen deterministically.



Algorithm 2.2 Probabilistic direct search based on sufficient decrease

Identical to Algorithm 2.1 except that the polling directions in Step 1 are generated randomly.

For a clear discussion of Algorithm 2.2, it is necessary to use different notations for random
elements and their realizations. Similar to [17], we adopt the notations summarized in Table 1.
Additionally, we denote

Gr = Vf(Xy).

Table 1: Notations for random elements and their realizations

Polling direction set Iterate Step size

Random element Dy Xy Ay

Realization Dy, Tk oy

Similar to [17, Assumption 2.3], we make the following blanket assumption on the sequence
of polling direction sets {®y} to simplify our presentation, although our analysis remains valid

after slight modifications if the lengths of the polling directions are only uniformly bounded.

Blanket Assumption. For each k > 0, the set Dy, is nonempty and consists of finitely many

unit random wvectors.

The investigation into Algorithm 2.2 heavily relies on the concept of o-algebras and conditional
probability with respect to them [16, Section 4.1]. For each k > 0, we define

]:k = 0'(@0, Xl, ey @k, Xk+1), (2.2)
which is the o-algebra generated by ®g, X1, ..., Dk, Xr11. In addition, we define
Fo1 = {0, Q}.

Roughly speaking, Fj captures the information about the polling directions and iterates up
to the end of iteration k, when X1 has been generated but ®j,; has not. Note that Fy
does not involve Xy, which is deterministically chosen. Obviously, ©; is Fj measurable
and Xj is Fp_1-measurable for each k£ > 0. If f is continuously differentiable, then Gy, is
also Fp_i-measurable. In addition, Ay is Fj_i-measurable by mathematical induction based on

the recurrence
Apiq = ,yﬂ(Xk+l7éXk)01(Xk+1:Xk)Ak’ (2.3)

which holds because we have {Ax11 = YAr} = { X1 # Xk} and {Ag41 = 0A,} = {Xp+1 = X}
in Algorithm 2.2.

The global convergence theory of probabilistic direct search can be stated as follows.



Definition 2.2 ([17, Definition 3.1]). Let p € [0,1] and x € [-1,1]. Consider Algorithm 2.2
with f being continuously differentiable on R™. The sequence {®} is said to be a sequence

of p-probabilistic k-descent sets if it satisfies
P(ecm (D, —Gg) > k| Fr—1) > p for each k> 0. (2.4)

Theorem 2.1 ([17, Theorem 3.4]). Consider Algorithm 2.2 with f being continuously differen-
tiable and bounded below on R™, and V f being Lipschitz continuous on R™. If {Dy} is a sequence

of po-probabilistic k-descent sets with py being defined in (1.2) and k being a positive constant,
then P(liminfy, [|Gk|| = 0) = 1.

Remark 2.3. The o-algebra Fj, defined in (2.2) will reduce to o(Dy,...,Dr_1) if we assume
that Xy, is measurable with respect to o(Dyg, ..., Dk_1). As clarified in Lemma C.1, this assumption
is fulfilled by implementations of Algorithm 2.2 considered in [17]. However, such an assumption is
not guaranteed if we allow the unspecified polling strategy in Algorithm 2.2 to involve randomness
beyond the polling directions (see Example C.1). Therefore, we choose not to impose such
an assumption. In this sense, Theorem 2.1 is indeed a slightly generalized version of [17,

Theorem 3.4/, but the proof remains essentially the same.

Remark 2.4. The probability in (2.4) is a probability with respect to a o-algebra, which is a
random variable (see [16, Section 4.1]). Following the convention in probability theory (e.g., [16,
Page 179] and [20, Page 195]), the inequality in Definition 2.2 should be understood in the almost

sure sense, that is,
P(em (D, —Gi) > k| Fr—1) > p a.s. for each k> 0.

This is because the conditional probability P(- | Fr_1), as a random variable, is only defined up
to almost sure equivalence. Henceforth, all the equalities and inequalities should be understood in
this way if they involve conditional probabilities or expectations with respect to a o-algebra, and

we will not repeat this point every time.

In practice, ®y, is typically chosen to be m independent random vectors uniformly distributed

on the unit sphere in R™. Theorem 2.1 leads to Corollary 2.1 for this typical implementation.

Corollary 2.1 ([17, Corollary B.4]). Consider Algorithm 2.2 with f satisfying the assump-
tions in Theorem 2.1. Let v > 1 be a constant, {Dr} be mutually independent, and each Dy,

be a set of m independent random wvectors uniformly distributed on the wunit sphere in R™.

Then P(liminfy |Gkl = 0) = 1 if m > logy(1 — log 6 /log 7).



2.3 Notations

For an event E, we use 1(F) to denote the random variable such that

1, if E happens,
1(B) = pp

0, otherwise.

The abbreviation “a.s.” stands for “almost surely”. The Euclidean norm is denoted by || - ||,
and B(z,r) represents the open Euclidean ball centered at x € R™ with radius » > 0. As in [35,
page 113], we define the gap distance between two sets A, B C R"™ as

gap(A, B) = inf{|la — b|| : a € A,b € B},

which is supposed to be oo if A =0 or B = (); if A is a singleton {a}, then we write gap(a, B)
instead of gap({a}, B). We denote

inf f = inf
inf f = inf /()

S(f) = {x € R": f(x) =inf f}.

Note that inf f may be —oo and S(f) may be empty.

3 Probabilistic ascent and non-convergence analysis

How will Algorithm 2.2 behave if the polling direction sets {®y} fail to satisfy the probabilistic
descent condition in Theorem 2.17 This section will address this question by introducing the
concept of probabilistic ascent and establishing the non-convergence theory of probabilistic direct
search. Before diving into the analysis, we first provide a numerical example in Subsection 3.1 to
illustrate the failure of convergence of Algorithm 2.2 when the probabilistic descent condition
does not hold. Then we introduce the concept of probabilistic ascent in Subsection 3.2. After
that, we establish the non-convergence of probabilistic direct search via Markov’s inequality in
Subsection 3.4 and then via a Chernoff bound in Subsection 3.5. A weaker assumption will be

proposed in Subsection 3.6 to broaden the non-convergence analysis.

3.1 Failure of global convergence: a numerical illustration

We conduct a simple test to illustrate the behavior of Algorithm 2.2 when the probabilistic descent
condition in the convergence theory is not satisfied. We will focus on the typical implementation
of the algorithm discussed in Corollary 2.1, with each ®; being a set of m random vectors

independently and uniformly distributed on the unit sphere.



For simplicity, we choose the objective function f(z) = zTz with z € R2. We set the forcing
function p(a) = 10732, the initial point 29 = (—10,0)T, the initial step size oy = 1, the
shrinking factor § = 1/4, and the expanding factor v = 3/2. The polling sets are mutually
independent, and each of them consists of m = 2 random vectors independently and uniformly
distributed on the unit sphere in R?. Note that logy(1 — log#/logvy) ~ 2.14 > m, violating
the condition in Corollary 2.1 for convergence. The polling strategy is complete polling. The
algorithm is terminated when the step size drops below the machine epsilon (= 2 x 10716) or the
number of iterations reaches 103. We run the algorithm for 10* times independently. The results
are shown in Figure 1, where the circle represents the initial point, the pentagram represents the
global minimizer, and each dot represents the best iterate (i.e., the one with the lowest function
value) of the algorithm in a run. As we can see, many of these dots are far away from the global
minimizer. Even though we cannot draw any rigorous conclusion about the asymptotic behavior
of Algorithm 2.2 based on this test, the results motivate us to conjecture that the algorithm fails

to be globally convergent under this setting. We will confirm this conjecture in the subsequent

analysis (see Corollary 3.1).

O Initial point 3 Global minimizer « Output point of each run of Algorithm 2.1

Figure 1: A test illustrating failure of convergence of Algorithm 2.2



3.2 Probabilistic ascent

Our non-convergence analysis relies on the concept of probabilistic ascent defined below. As
mentioned in Remark 2.4, condition (3.1) in this definition should be understood in the almost

sure sense.

Definition 3.1 (p-probabilistic ascent). Let p € [0,1]. Consider Algorithm 2.2 with f being
continuously differentiable on R™. The sequence {Dy} is said to be a sequence of p-probabilistic

ascent sets if it satisfies
P(ecm (Dg, —Gr) < 0| Fr—1) > pl (G #0) for each k > 0. (3.1)

Proposition 3.1 shows that the sequence {®;} specified in Corollary 2.1 is a sequence

of p-probabilistic ascent sets with p = 27"™. The proof is given in Appendix B.

Proposition 3.1. Consider Algorithm 2.2 with f being continuously differentiable on R™.
Let {Dy} be mutually independent, and each Dy, be a set of m > 1 independent random vectors
uniformly distributed on the unit sphere in R™. Then {Dy} is a sequence of p-probabilistic ascent

sets with p =27,
Remark 3.1. It may be tempting to define p-probabilistic ascent as
P(ecm (D, —Gr) <0| Fr—1) > p  for each k > 0. (3.2)

If we adopted this definition instead of Definition 3.1, then all the results requiring p-probabilistic
ascent in this paper would still hold, since (3.2) is stronger than (3.1). However, in case one
defines cm(-,0) to be positive (e.g., cm(-,0) =1 as in [17]), condition (3.2) with p > 0 will
actually enforce

P(Gy=0) = 0 for each k>0, (3.3)

meaning that the algorithm almost never steps on a stationary point, which is a restriction that
we do not want to impose. To see why (3.2) implies (3.3) when p >0 and cm(-,0) > 0, let us
assume P(G = 0) > 0. Then (3.2) and Lemma A.3 will lead to the contradiction that

0 <p < Plem(Dg,—Gi) <0|Gr=0) = Plem (D4,0) <0|Gr=0) = 0.

Complementing Remark 3.1, Example 3.1 illustrates the difference between condition (3.1) in
Definition 3.1 and condition (3.2). It also serves as an example to show that (3.3) is undesirable
to impose when analyzing randomized algorithms like Algorithm 2.2, even though it is not
uncommon to assume that algorithms never step on a stationary point in the deterministic

case (e.g. [28, Section 1]).

Example 3.1. Let n =1, f(z) = 22, and 0 = ap = 1. Consider Algorithm 2.2 with Dy = {01},

where dy, is a random variable independent of F—1 and takes values £1, each with probability 1/2.



By Proposition 3.1, {D} is a sequence of 1/2-probabilistic ascent sets as defined in Definition 3.1.
However, whether {Dy} satisfies condition (3.2) with p = 1/2 depends on the definition of cm( -, 0).
Suppose that we define cm(-,0) = 1 following [17]. Then, as was pointed out in Remark 3.1,
condition (3.2) with p > 0 necessitates (3.3), but we can check that

P(Gy = 0) = 1/2,
violating (3.3) for k = 1. Consequently, (3.2) cannot hold for any p > 0 if cm(-,0) = 1.

In Example 3.1, condition (3.1) holds no matter how we define cm(-,0). Proposition 3.2
shows that such a condition is indeed always independent of cm( -, 0). This proposition can be
obtained by applying Lemma A.2 to the events E = {G}, = 0} and F' = {cm(Dy, —G) < 0}
while noting that F U F' = {minae@kDTGk > 0}.

Proposition 3.2. Let p € [0,1]. Consider Algorithm 2.2 with f being continuously differentiable

on R™. For each k > 0, the following inequalities are equivalent to each other.
(a) P(cm(Dy, —Gg) < 0| Fr—1) > pl(Gy # 0).

(b) P{em(Dp, =Gr) < 0} N{G. # 0} | Fi—1) = pL(Gi # 0).

(¢) P(mingep, 0TGr > 0| Fi—1) > p.

Remark 3.2. Neither item (b) nor (c) in Proposition 3.2 relies on the definition of cm(-,0).
Therefore, condition (3.1) based on (a) is independent of cm(-,0). Consequently, no matter how
we define cm( -, 0), Definition 3.1 of probabilistic ascent is invariant, and the results in this paper

hold without any modification.

Remark 3.3. Assuming P(Gy, # 0) > 0, by Proposition 3.2 and item (b) of Lemma A.4 (see

also Remark A.1), we can rewrite the inequality in Definition 3.1 as
Pr(cm (D, —Gi) < 0| Fr—1) > p  (Pg-a.s.), (3.4)

where Py is the probability measure defined by Pr(E) = P(E | Gy, # 0) for all E € F, and
Pr(- | Fr—1) is the corresponding conditional probability with respect to Fi_1. Inequality (3.4)
leads to the following interpretation of probabilistic ascent in Definition 3.1: conditioned on Gy, # 0,
the probability of cm (D, —Gy) < 0 is at least p regardless of Fx—1. We choose not to use (3.4)
in Definition 3.1 to avoid any assumption about P(Gy # 0).

Before ending this section, we refer interested readers to Appendix D, which discusses an

alternative definition of probabilistic descent (see Definition 2.2) using a condition similar to (3.1).

10



3.3 Key ingredients of our analysis

Our analysis will heavily depend on the 0-1 process {Y;} with
Yi=1 (min TG, < 0) for each k£ > 0. (3.5)
0ED,

For each k£ > 0, we define

k—1
v = [ (55)
0=0
1 k—1
Y = 22 Yo (3.7)
(=0
k—1
=0
with the convention that
UO = 1, ?0 = 0, and EO = Q. (39)

Note that {E}} is a nonincreasing sequence of events. In addition, since 0 < § < 1 <+, we have
k—1

By = ({Ur =06 (3.10)
=0

We can check that Y}, is Fj-measurable, while Uy, Y}, and E), are Fj,_;-measurable.

Assuming the convexity of f, Lemma 3.1 links the iterates {Xj} with the sequences {Y}}
and {Ug}. As will be detailed in the proof, the convexity of f provides a useful connection
between Y}, and iteration k of Algorithm 2.2: if Y, = 0, then the descent condition (2.1) cannot be
satisfied, leading to Xy1 = Xy and Agy1 = 0 Ay, which is essentially why the lemma holds.

34
3.1

Lemma 3.1. Consider Algorithm 2.2 with f being differentiable and conver on R™. Then

oo o0
sup || X — xol| < aOZYkUk < OéOZUk~ (3.11)
2 k=0 k=0

Proof. For each k£ > 0, we note that
[ Xk1 — Xil| < YieAy. (3.12)

Indeed, if Y3 = 0, then ®j, contains no descent direction, so that the descent condition (2.1) can

never be satisfied due to the convexity of f, leading to X411 = Xy and thus (3.12); when Y3 = 1,

11



inequality (3.12) holds because of our blanket assumption that ©j contains only unit vectors.

Following a similar logic, we have
Appr < Y0704, (3.13)
because A1 = 0A; if Vi = 0 and Ag4q < A otherwise. Recalling Ag = o and the

definition (3.6) of Uy, we use (3.13) recursively and obtain

k—1
A < aoH’leelfye = agUy. (3.14)
£=0

Since X¢ = xg, by (3.12) and (3.14), we have

k-1 k-1 k-1 k-1
| Xk — o] < ZHXZ—H_XZH < ZYer < OéOZYzUz < OZOZU& (3.15)
=0 =0 =0 =0

where the last inequality is because Yy < 1. Finally, we get (3.11) by taking the supremum
over k > 0in (3.15). O

Remark 3.4. Lemma 3.1 plays a crucial role in our non-convergence analysis. Roughly speaking,

the main idea of our analysis is to show that

P <sup | Xk — 2ol < C) > 0 (3.16)
k>0

for some ¢ >0, so that {Xy} is bounded away from S(f) with positive probability as long as x
is sufficiently far away from S(f), namely,

gap(zo, S(f)) = ¢.

Lemma 3.1 reduces the work of establishing (3.16) to studying Y - oYU or > ;o g Ui. Our
main results Theorems 3.1, 3.2, 3.3, and 3.4 all follow this idea, directly or indirectly.

The sequence {Y}} also provides us with an equivalent definition of probabilistic ascent as

stated in Lemma 3.2. This equivalence is a simple consequence of Proposition 3.2.

Lemma 3.2. Consider Algorithm 2.2 with f being continuously differentiable on R™. For
any p € [0,1], {Dr} is a sequence of p-probabilistic ascent sets if and only if the sequence {Yy}
defined by (3.5) satisfies

P(Yy,=0|Fir-1) > p foreach k> 0. (3.17)

Condition (3.17) is foundational to our analysis in Subsections 3.4 and 3.5. The behaviour of
the sequences {Y;} and {Uy} needed in our analysis follows from (3.17) without relying on the
specifics of Algorithm 2.2.

12



3.4 Non-convergence analysis via Markov’s inequality

In this subsection, we use Markov’s inequality to conduct the non-convergence analysis as a
preliminary step. The main idea of the following Theorem 3.1 is that under suitable assumptions,

the expectation of the series of step sizes is finite.

Theorem 3.1. Consider Algorithm 2.2 with f being differentiable and conver on R™. If {Dy} is
a sequence of p-probabilistic ascent sets with p > (v —1)/(y — 0), then we have

P(gap({ Xk}, S(f)) >0) > 0

provided that gap(zo, S(f)) > ao/[1 — v + p(y — 0)].
Proof. We prove that P(gap({Xy},S(f)) = 0) < 1. Note that

{gap({X1}, S(f)) = 0} C {2&% | X5, — o] > gap(:no,S(f))} c {Z Uy > gap(xo,S(f))} 7

(0]
k=0 0

where the last inclusion is due to Lemma 3.1. Therefore, it suffices to show that

p“UZwmwmg<L

Define 8 = 1/[1 —v+p(y—0)]. Recalling the assumption that gap(xo, S(f)) > ap/S and Markov’s

inequality, we only need to prove that

E (i Uk> < B. (3.18)
k=0

With our assumption on p ensuring 0 < y(1—p)+60p < 1, we have 8 = Y 22, [v(1—p)+0p]*. Mean-
while, Tonelli’s theorem [36, page 420] (also [16, Theorem 1.7.2]) yields E(3"22 Ux) => pe o E(Uy).
Thus, the proof of (3.18) can be reduced to establishing

E(Us) < [v(1 —p) +6p]* for each k > 0. (3.19)

The proof of (3.19) is standard. For each k > 0, using the tower property of conditional
expectation and the definition of {Uy} in (3.6), we have

E(Upt1) = E(E (0" Uy | Fy1)) = E(E (¥"%0'% | Fir) Uy)
where the last equality is because Uy is Fj_1-measurable. By Lemma 3.2,
E (y"0" "% | Fiy) = P(Y = 1| Fye1) + 0P(Yy, = 0| Fy1) < v(1 —p) + Op.

Hence, we have
E(Uk+1) < [v(1 —p) + Op|E (Uk) ,

which implies (3.19) and concludes our proof. O

Remark 3.5. Theorem 3.1 holds trivially if S(f) = 0, because gap(-,S(f)) = oo in this case.

13



3.5 Non-convergence analysis via a Chernoff bound

In the preceding subsection, we establish the non-convergence results under the requirements
that p > (y—1)/(y—0) and gap(zo, S(f)) being large enough. In this subsection, we will weaken
the requirement on p to p > p, with

log v
log(6=1y)’

where py is defined in the convergence theorem (Theorem 2.1), and we will relax the requirement

px = 1—py = (3.20)

on xg. Moreover, our non-convergence results will not only hold for the stationarity measure

gap(-,S(f)), but also extend to any lower semicontinuous function.

3.5.1 Lemmas and key observations

We first present a few propositions regarding the 0-1 process {Y;} defined by (3.5) and its

associated sequences {Uy}, {Yx}, and {Ex} defined by (3.6)—(3.8). We emphasize that these

propositions are purely consequences of condition (3.17) and independent of the algorithm.
Lemma 3.3 establishes a Chernoff-type bound for {Y}}, which is essentially a generalization

of [17, Lemma 4.5]. Lemma 3.4 shows that condition (3.17) is preserved under conditioning

on Ej, with any given integer ko > 0, as long as we shift the indices of {Y;} and {Fj} by ko.

Both lemmas are proved in Appendix B since the arguments are straightforward.

Lemma 3.3. If0 < g < p <1, then condition (3.17) implies that

2

(p—q)

P(l—?kgq]Eko) < exp |— %

(k+ko)| forallk>0 and ko > 0. (3.21)

Remark 3.6. Noting the definition (3.8) of Ex, we can derive from condition (3.17) and the

tower property of conditional expectations that
P(Ey) > p* forallk >0,
Therefore, the conditional probability in Lemma 3.3 is well defined for any p > 0.

Lemma 3.4. Suppose that p > 0. Given an integer kg > 0, define Y, = Yio+k and Fi = Flo+k
for each k, and denote the probability measure P(- | Ey,) by P. Then condition (3.17) implies that

P(Yy,=0|Fi_1) > p foreach k> 0. (3.22)

Proposition 3.3 is a key observation on the series Z,OCO:,CO Uk, where kg > 0 is an integer. It
shows that condition (3.17) with p > p, renders a lower bound for the cumulative distribution
function of Y 72 ko Uk conditioned on Ey,. More importantly, this lower bound is a positive-valued

function independent of kg after a suitable scaling.

14



Proposition 3.3. Ifp > p., then condition (3.17) implies that there exists a function Y satisfying

> U

k=ko

E,| > Y0 >0 (3.23)

for all ( > 1 and kg > 0. Here, the function Y is determined by p, 6, and .

Proof. Our proof has two steps. First, identify a function Y fulfilling (3.23) for ( > 1 and kg = 0;
second, prove that T still works when we relax kg to all nonnegative integers.

Step 1. Since Ey = 2 as mentioned in (3.9), this step is to find a positive value Y(¢) for an
arbitrarily given ¢ > 1 so that

: = ¢
P > = —— 5. .
(F) > Y(¢) with F {Z Uk < 12 (3.24)
k=0
To this end, we consider the event E,, defined in (3.8) and note that

P(F) > P(FﬁEm) = P(F | Em) P(Em) (3'25)

for each m > 0. In the sequel, we will bound P(F' | E,;,) and P(E,,) from below, and select an m
in order that (3.25) yields a desired lower bound for P(F).
Due to the definition of F in (3.24) and the fact that E, = [, {Uk = 0%} mentioned
n (3.10), it holds that

m—1 e’} e’}
P(F | Ep) = ]P’(ng+ZUk<1EH‘Em> > IP’(ZU;C<§_;‘EW>, (3.26)
k=0 k=m k=m

motivating us to bound )7 Uy from above. To do this, we define ¢ = (p+ p«)/2 and note that

{Z U, < Z 1=aga) } ﬁ {U;/k <,Ylfq9q} — ﬁ {1-Y,>q}, (3.27)
k=m

k=m

where the equality is because Ukl:/ b= 7Y £k by definitions (3.6)—(3.7) of Uy and Y. Thus,

(ZUk<Z (v'-20)" m)zl— (G{l—Yk<q}‘ )
h=m (3.28)
Zl—Zexp[ )(k—l- )}

which invokes Lemma 3.3 in the last step. Let m be the smallest nonnegative integer satisfying

[e.e] o

B N2
3 (') f; and ) exp [(p%q)(’ﬁ”n)} =<

k=m k=m

I

(3.29)

DO | =

15



Such an m exists because v'7909 < 1 and (p —q)?/(2p) > 0 (observe that y'~P+P« = 1 and recall
that 0 < p, < ¢ < p). The first inequality in (3.29) ensures that the right-hand side of (3.26) is
no less than the left-hand side of (3.28), and the second inequality in (3.29) guarantees that the
right-hand side of (3.28) is at least 1/2. Therefore, we can join (3.26) and (3.28) to obtain
1
P(F | Ep) > 5
Meanwhile, we have P(E,,) > p™ by Remark 3.6. Hence, inequality (3.25) implies (3.24) with

Given p, 0, and ~, the integer m is fully determined by ¢ and so is Y((), defining a function T
that is sufficient for the first step of the proof.

Step 2. Now, we prove that the function T found in the last step satisfies (3.23) for all ¢ > 1
and ko > 0. Fix an arbitrary ko > 0. Define P, {F;,}, and {V}} as in Lemma 3.4. According to
this lemma, condition (3.17) implies condition (3.22), which has exactly the same form as (3.17),
with P, {Y:}, and {F;.} corresponding to P, {Y;}, and {F}}, respectively. Therefore, repeating
the proof for (3.24), we can verify that Y fulfills

P(F) > T(¢) with F = {iUk < 130} (3.30)
k=0

for all ¢ > 1, where U, = ]Z:_ol 7%1% for each k > 0. We will show that (3.30) ensures (3.23).
The definitions of {Y;}, {Ux}, and Ej, (see Lemma 3.4, (3.6), and (3.8), respectively) imply that

ko+k—1
Up = [ 707" = U Urysr = 07"Usyia (3.31)
k=ko

when Ej, occurs. Recalling that P(-) = P(- | E,) and plugging (3.31) into (3.30), we have

. ad > ko
T() < P(F|Ey) =P (ZekOUkM < % ‘ E,%) =P|> U< ¢ Ej,
k=0

for all ¢ > 1, which matches (3.23) as desired. This finishes our proof. O

Remark 3.7. Given an integer ko > 0, condition (3.17) with p > p. indeed ensures the following

equivalence:

o0 eko
P ZU;C<1_C0

‘Eko >0 = ¢ > 1.
k=ko

The implication from right to left is due to Proposition 3.3, while the reverse implication holds
because Y p . Up = 350, 08 = 0% /(1 —0).
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Proposition 3.3 leads to Proposition 3.4, a crucial observation on the cumulative distribution
function of Y7 Y3 Uy. When {Y3} fulfills condition (3.17) with p > p., this distribution function
turns out to be positive everywhere on (0, 00), and its tail at 0T decays no faster than a power
function with exponent logp/log . This observation will help us establish the non-convergence
result in Theorem 3.2 and derive a lower bound for the probability of non-convergence in
Theorem 3.3.

Proposition 3.4. For ( > 0, define

B() =P (Z YUy < () . (3.32)
k=0
If p > p., then condition (3.17) implies that there exists a constant C' > 0 such that
lo
®(C) > CClet for ¢ e (0,1). (3.33)
Proof. Given a ¢ € (0,1), define

m = {W] (3.34)

Then m > 0. Recalling that E,, = ﬂ}?:_ol{Yk = 0} as defined in (3.8), we have

{ZYkqu} D) {ZYkUk<C}ﬂEm > {ZUk<12_W;}ﬂEm, (3.35)
k=0 k=m

k=m

where the last inclusion uses the inequality Y3 < 1 and the fact that 26™ /(1 — 0) < ¢ by the
definition (3.34) of m. Combining (3.35) with the definition of ® in (3.32), we obtain

() > P (Z v < 2 Em) P(Em) = T,
k=m

where T(2) in the last step comes from Proposition 3.3 and p™ comes from Remark 3.6. Therefore,

_logp 1 1
log [2(0)¢™ 4] > log[Y(2)] + m1logp - (éﬁj) log ¢ = log[T(2)] + (m - 1og9> logp.

Plugging the definition (3.34) of m into this inequality, we obtain by direct calculation that

_logp log[(1 —0)/2]
o, > =2 0 JF 4
log [@(C)C I 39} > log[Y(2)] + ( log 0 1) logp,
which implies (3.33), with C being the exponential of its right-hand side. O
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3.5.2 Qualitative and quantitative non-convergence results

This subsection presents our main results on the non-convergence of Algorithm 2.2. Under a
probabilistic ascent assumption on the polling direction sets, we characterize the non-convergence
the algorithm qualitatively in Theorem 3.2 and quantitatively in Theorem 3.3, the latter providing
a lower bound for the probability of non-convergence. Moreover, we show the tightness of our
probabilistic ascent assumption by Example 3.2.

It is worth mentioning that we will use a lower semicontinuous function p to measure the
distance of a given point to optimality, with a point € R™ being optimal if and only if u(z) = 0.
Examples of such an optimality measure include f(-) —inf f, gap(-, S(f)), and ||V f(-)||.

Theorem 3.2 is our qualitative non-convergence result, stating that Algorithm 2.1 stays away
from the optimal set with positive probability under a probabilistic ascent assumption, provided

that the algorithm is initialized at a non-optimal point.

Theorem 3.2. Consider Algorithm 2.2 with f being differentiable and conver on R™. Suppose
that {Dy} is a sequence of p-probabilistic ascent sets with p > p.. Then we have

P (gg w(Xy,) > 0> > 0 (3.36)

for any function p: R™ — (—o00,00] that is lower semicontinuous, provided that u(xo) > 0. In
particular, the conclusion holds if p is f(-) —inf f, gap(-, S(f)), or ||V ()]

Proof. Take a positive constant € < p(xp). By the lower semicontinuity of p, there exists a § > 0
such that {z : u(x) > e} D B(xo, ). Hence,

{]ir;ié ,u(Xk)>0} > {{Xk}g{a::,u(x)>€}} > {{Xk}gB(xo,cS)}. (3.37)

Meanwhile, Lemma 3.1 implies that

{{Xk} C B(:co,é)} > {?338 1X, — o] < 5} > {i YUy < 5/a0} . (3.38)

k=0
The last event in (3.38) has a positive probability by Proposition 3.4, because {Y}} satisfies
condition (3.17) according to Lemma 3.2. Therefore, (3.37) and (3.38) yield (3.36). O

Remark 3.8. Theorem 3.2 is stronger than Theorem 3.1 in three aspects. First, Theorem 3.2 has
a weaker requirement on p since ps = log(v)/log(6=1y) < (v —1)/(y — ). Second, the optimality
measure in Theorem 3.2 can be any lower semicontinuous function p, while the one in Theorem 3.1
can only be gap(-, S(f)). Third, even when u(x) = gap(z,S(f)), the condition p(xg) > 0 in
Theorem 3.2 is weaker than gap(zo,S(f)) > ao/[1 —~ + p(y — 0)] in Theorem 3.1.

Theorem 3.3 is our quantitative non-convergence result, which estimates the probability that
the optimality measure in Theorem 3.2 remains close to its initial value. This provides a lower

bound for the non-convergence probability of Algorithm 2.2 if its initial point is non-optimal.

18



Theorem 3.3. Under the settings of Theorem 3.2, if we assume further that p is locally Lipschitz

continuous at xo, then there exist constants C > 0 and { > 0 such that the function

¥(0) = P (jut u(x) > (1= Outeo)) (3.39)

satisfies

lo, —
W) > CCoet for ¢ €(0,0). (3.40)
Proof. By assumption, there exist constants L > 0 and § > 0 such that
lu(z) — w(xo)| < L|lx —xo| for all z € B(xo, 9). (3.41)

For all ¢ € (0, LJ), combining (3.41) with Lemma 3.1 renders

{}cg%ﬂ(Xk) > p(xo) — C} 2 {{Xk} - B(fEO,C/L)} 2 {kZOYkUk < C/(Lao)}-
Consequently, the definition of ® in (3.32) and that of ¥ in (3.39) yield

() = @(¢/(La)).
Thus, Proposition 3.4 implies the desired lower bound for ¥((). O

Recall Corollary 2.1, which states that Algorithm 2.2 will converge with probability 1

if m > logy(1 — log #/log~y). The following corollary shows the non-convergence side.

Corollary 3.1. Consider Algorithm 2.2 with f being differentiable and convex on R™. Let {®}
be mutually independent, and each Dy be a set of m > 1 independent random vectors uniformly

distributed on the unit sphere in R™. If v =1 or

log 6
log, (1 - 42
m < togy (1-127)). (3.42)

then (3.36) holds for any function p : R™ — (—o0, 00| that is lower semicontinuous with u(xg) > 0.
If we further assume that p s locally Lipschitz continuous at xq, then there exist constants C > 0

and ¢ > 0 such that (3.40) holds with p = 27™.

Proof. Proposition 3.1 ensures that {®y} is a sequence of p-probabilistic ascent sets with p = 27™.
According to Theorems 3.2 and 3.3, it suffices to show that 27 > p,, which is guaranteed by
the definition of p, in (3.20) if v = 1 or m satisfies (3.42). O

Remark 3.9. Comparing Corollaries 2.1 and 3.1, we observe that their requirements on the
algorithmic parameters 0, v, and m are nearly the complements of each other. The only gap is the
marginal case with m = logy(1 —log 8/ log~y), which is not a concern unless logs(1 — log 6/ log~)

18 an integer.

19



Note that Theorem 3.2 requires {®y, } to be a sequence of p-probabilistic ascent sets with p > p,.
We use Example 3.2 to show that such a requirement cannot be relaxed to p > p.. In this
example, {Dy} is a sequence of p-probabilistic ascent sets with p = p,, but Algorithm 2.2
converges with probability 1. Note that this example defines {D} using gradient information,

even though practical implementations of Algorithm 2.2 are supposed to be derivative-free.

Example 3.2. Consider Algorithm 2.2 with f being continuously differentiable and bounded
below on R™, and V f being Lipschitz continuous on R™. For each k > 0, define

Gir/|Grll, if Gi #0,

d, otherwise,

where d is a fived unit vector (e.g., any coordinate vector). Then we set Dy = {0y}, where & is
a random variable that is independent of Fi_1 and equals 1 and —1 with probability p, and 1 — py,
respectively. Note that

P(mindTGy> 0] Fir) = P(G[Gr 20| Fer) = P& =1 Fy1) = pa.
0ED,

Hence, {®y} is a sequence of p.-probabilistic ascent sets according to Proposition 3.2. Meanwhile,
one can check that {Dy} is a sequence of po-probabilistic 1-descent sets (note that pg = 1 — py),
implying that P (liminfy, |G|l = 0) = 1 according to [17] (see also Theorem 2.1).

Remark 3.10. Consider Algorithm 2.2 with v = =1, which renders p, = 1/2. Then Ezample 3.1

is indeed a one-dimensional special case of Example 3.2.

3.5.3 Numerical verification of the quantitative non-convergence result

In this subsection, we demonstrate the quantitative non-convergence result in Theorem 3.3
numerically. As an example, we will focus on the case with u(x) = f(z) — inf f, which reduces
the function ¥ defined in (3.39) to

#(0) = P (juf F(X0) > flan) = ).

k>0

Theorem 3.3 shows that the tail of ¥ at 0 decays at a rate no faster than ¢'°7/1°8¢ - Geometrically
speaking, if we plot ¥(¢) against ¢ on a log-log scale, the slope of the curve at 0 should be no
more than logp/log#, which will be illustrated numerically by the following experiment.

The experiment is set up in the same way as in Subsection 3.1 except for the algorithmic
parameters 6, v, and m. To ensure the representativeness of the results, we randomly sample

five values of the triple (0,7, m) as follows.
(a) Sample p, and 6 uniformly from the intervals (0,0.45) and (0.25,0.75), respectively.

(b) Set v = gp+/(p+=1) and m = | —logy p« — eps|, where eps is the machine epsilon.
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This sampling scheme ensures that inequality (3.42) holds. Hence, ® satisfies inequality (3.40)
in Theorem 3.3 (see Corollary 3.1).

Given a sample of (8,7, m), we perform N = 107 independent runs of Algorithm 2.2, each
of which is terminated when the step size drops below the machine epsilon or the number of
function evaluations reaches 103. The best (lowest) function value found in each run is denoted
by fpest- Then we define

WQ) =

number of runs with fpest > f(20) — C),

which is our estimation of ¥(().

Figure 2 plots log;,[¥(¢)]/(log p/ log ) against log;, ¢, with ¢ varying between 1073 and 10~'.
Each curve corresponds to a sample of (6,7, m). Since we are concerned with the slopes rather
than the intercepts, the curves are vertically shifted by small constants to separate them visually.
As a reference, the figure includes a black dashed line with slope 1.

Across all the samples, the curves are almost parallel to the reference line, which is consistent
with the rate in Theorem 3.3. Indeed, the almost perfect parallelism motivates us to conjecture

that the rate in the theorem is tight, which is an interesting topic for future research.

O T T T
—e— sample 1
—e— sample 2
sample 3
0.5r —e— sample 4
—e— sample 5
= = slope = 1 (theory) ]
g -1lr L7
&
<
z
-1.5 7
’_‘Qb
<2§’3
=
&l
S|y -2 4
-2.5 1
-3
-3 -2.5 -2 -1.5 -1
logyy ¢

A

Figure 2: Curves of log;o[¥(¢)]/(logp/log @) versus log,, ¢ for five random samples of (6,~,m).
The curves are vertically shifted for clarity. The dashed line is a reference line with slope 1.
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3.6 Non-convergence under a weaker assumption

Example 3.2 shows that we cannot weaken our assumption in Theorem 3.2 by replacing p > p«
with p > p.. However, this subsection will show that it is indeed possible to relax the definition
of probabilistic ascent to obtain a weaker assumption that renders a weaker non-convergence
result compared with Theorem 3.2.

Consider Algorithm 2.2 with f being differentiable and convex on R™. In place of probabilistic

ascent, this subsection assumes that {9y} satisfies
P <li]§n inf {P (cm (Dy, —Gr) < 0| Fr—1) > pl(Gr # 0)}> > 0. (3.43)
— 00

According to Proposition 3.2, condition (3.43) holds if and only if the sequence {Y}} defined
in (3.5) satisfies
P(nkm inf {P (Yj, = 0| Fp_y) > p}> ) (3.44)
—00

Remark 3.11. Condition (3.44) means that the event
{P(Yy, =0 | Fx—1) > p for all sufficiently large k} (3.45)

occurs with positive probability. This is weaker than

P (ﬂ {P(Yr=0]Fk-1) > p}) > 0, (3.46)

k=0

which means that the event {P(Yy, = 0 | Fx—1) > p for each k} has a positive probability. Condi-

tion (3.44) is also weaker than

S PP (Vi =0|Fi1) <p}) < o0, (3.47)
k=0

since (3.47) implies that the event (3.45) occurs a.s. by the Borel-Cantelli Lemma [16, Theo-
rem 2.3.1].

Remark 3.12. As stated in Lemma 3.2, {Dy} is a sequence of p-probabilistic ascent sets if and
only if the sequence {Yy} satisfies

]P)(Yk‘ — 0 ’ ]:k‘—l) 2 p fO’f’ each k; Z 0, (348)

which is stronger than condition (3.44). Therefore, condition (3.43) can be regarded as a relazation
of p-probabilistic ascent defined in Definition 3.1. In addition, condition (3.48) implies both (3.46)
and (3.47), either of which in turn implies (3.44) as discussed in Remark 3.11.

Before we show the non-convergence result under assumption (3.43), we need to introduce
Lemma 3.6, which will be proved based on Lemma 3.5, a strong law of large numbers for

martingales.
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Lemma 3.5 ([10]). Let {Wy} be a martingale. If there exists an o > 1 such that

D R (Wi — Wit [*) /T < o0,
k=1

then we have Wy /k — 0 a.s. In particular, Wi /k — 0 a.s. if {Wx} has bounded increments.

Lemma 3.6. If p > p., then condition (3.44) implies that

P (i Uk < oo) > 0. (3.49)
k=0

Proof. By the root test, the series > 2, Uy converges if limsupy U,i/k < 1. Recalling the
definitions of Uy, in (3.6) and Y, in (3.7), we have

log (U;/k) = log (Wkeljk) = logf + Yy log(0™') = [(p. — 1)+ Y]log(6 '), (3.50)

where the last step uses the fact that p, = (log~y)/log(6~17). Since log(6~17) > 0, equality (3.50)

oo
{limsquk <1 —p*} - {Z Ur < oo} .
k=0

k—o0

indicates that

Therefore, by our assumption that p > p., inequality (3.49) can be established by proving

P <limsquk <1 —p> > 0. (3.51)

k—o0

To this end, let us define
P, = P(Yy=0]| Fr—1) foreachk >0.

Then E(Y;+ Py —1 | F—1) = 0 for each k > 0, implying that { S (Yo +Pr— 1)} is a martingale
with respect to {F%}. In addition, this martingale has bounded increments. Thus, Lemma 3.5
leads to

lim (Yy+Pr—1)=0 as.

dim (Vi Pe=1) =0 as,

where we define Py, = k™1 Zf;(} P,;. Hence, we have

limsupY ) = 1—liminf P, a.s.
k—o0 k—o0

Consequently,

P (limsquk <1 —p) =P <lim inf Pj, > p)
k—o00

k—o00

> P <lim inf P, > p> (3.52)
k—ro0

v

P <lim inf { P, > p}) .
k—oc0
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The two inequalities in (3.52) can be verified by noticing that

liminf P;, > liminf P, and {lim inf P, > p} D liminf{P; > p}.
k—00 k—00 k—00 k—o0

Finally, the last probability in (3.52) is positive by condition (3.44). The proof is complete. [J

Remark 3.13. In comparison with Lemma 3.6, condition (3.17) with p > p. implies

P (i Uy < oo) = 1. (3.53)
k=0

The proof is similar to that of Lemma 3.6. The magor difference is that (3.17) directly leads to

P (lim inf{ P, > p}> = 1. (3.54)
k—oo
Combining (3.54) and (3.52), we see that the probability in (3.51) equals 1, implying (3.53).

Now, we are ready to present the non-convergence result under the weaker assumption (3.43).

Its proof is similar to that of Theorem 3.2 with the help of Lemma 3.6.

Theorem 3.4. Consider Algorithm 2.2 with f being differentiable and conver on R™. If {Dy} sat-
isfies (3.43) with p > p., then there exists a positive constant ¢ such that

P (gap({ Xk}, S(f)) > 0) > 0
provided that gap(zo, S(f)) > C.

Proof. By Lemma 3.6, there exists a positive constant ¢ such that
= ¢
P = .
(Z Uy, < ao) > 0
k=0
Then we have
= ¢
P ({Xk} C B(wo,¢)) > P |sup | Xz —aol| <¢| > P[Y Up< =] >0,
E>0 =0 Qo
where the second inequality uses Lemma 3.1. Therefore, when gap(xg, S(f)) > ¢, we have

P (gap({Xk}, S(f)) > 0) > P({Xx} C B(z0,C)) > 0. O
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4 Extension to the nonsmooth case

In this section, we extend our non-convergence results to the nonsmooth case, assuming
that f : R™ — R is only convex but not necessarily differentiable. We will show that the
non-convergence results in Theorems 3.1-3.3 still hold if we generalize Definition 3.1 of proba-

bilistic ascent to Definition 4.1 as follows. Theorem 3.4 can be similarly extended.

Definition 4.1. Consider Algorithm 2.2 with f being locally Lipschitz continuous on R™. The

sequence {Dy} is said to be a sequence of p-probabilistic ascent sets if it satisfies

P(%é%n fo(Xp0) >0 | .Fk_1> > pl(0 ¢ Oc f(Xy)) for each k >0, (4.1)

where f°(-;0) is the generalized directional derivative of f along the direction 0, and J¢ f(+) is
the Clarke subdifferential of f (see [11, Definitions 1.1 and 1.3] and [12, Section 2.1]).

Remark 4.1. Condition (4.1) reduces to (3.1) when f is continuously differentiable on R™, since
in that case we have f°(Xg;0) =01 Gy and Oc f(Xy) = {Gr} (see [11, Proposition 1.13]).

For later usage, Proposition 4.1 verifies the measurability of two random variables, which
correspond to 1(Gj # 0) and 1(minyep, 0T G < 0) in the smooth case.

Proposition 4.1. Consider Algorithm 2.2 with f being locally Lipschitz continuous on R™. Then
we have the following for each k > 0.

(a) 1(0 ¢ Oc f(Xk)) is Fr_1-measurable.
(b) 1(minyep, f°(Xk;0) < 0) is F-measurable.

Proof. Item (a) holds because {z € R" : 0 ¢ ¢ f(z)} is open by [12, Proposition 2.1.5]. For
item (b), it suffices to note that 1(f°(Xx;0) < 0) is Fi-measurable for each 0 € Dy, which is true
since (x,d) — f°(x;d) is upper semicontinuous [12, Proposition 2.1.1 (b)] and hence Borel. [

Proposition 4.2 generalizes Proposition 3.1, namely the probabilistic ascent of the se-

quence {®y} specified in Corollary 2.1. The proof is given in Appendix B.

Proposition 4.2. With probabilistic ascent defined in Definition 4.1, Proposition 3.1 still holds

even if we remove the differentiability assumption about f.
To generalize Lemma 3.2, namely the equivalence between probabilistic ascent and condi-

tion (3.17), we shift the definition of Y} from (3.5) to

Y =1 <Dn€11912 [P (Xk;0) < O> . (4.2)

Lemma 4.1. With probabilistic ascent defined in Definition 4.1 and Yy defined in (4.2),

Lemma 3.2 still holds when f is locally Lipschitz continuous rather than continuously differentiable.

25



Proof. We only need to prove the equivalence between (4.1) and

IP’( mjian fo(X;0) >0 | ]:k—l) > p for each k > 0. (4.3)
ISKOR

Recalling that f°(X};0) = max{g'0: g € 0cf(Xy)} [11, Proposition 1.4], we have

{0 €0 (X} € { min /°(Xy;0) = 0}

€Dy,

Therefore, conditions (4.1) and (4.3) are equivalent according to Lemma A.2. O

Remark 4.2. Since conditions (4.1) and (4.3) are equivalent, Definition 4.1 can be stated
without the indicator function 1(0 ¢ Oc f(Xk)). However, we prefer the current form because it is

consistent with Definition 3.1, where the 1(Gy # 0) term is necessary according to Remark 3.1.
Now, we can extend Theorems 3.2 and 3.3 to the nonsmooth case.

Theorem 4.1. With probabilistic ascent defined in Definition 4.1, Theorems 3.2 and 3.3 still hold
even if we remove the differentiability assumption about f and replace |V f(-)|| with gap(0,0c f(+)).

Proof. We only need to verify that Lemmas 3.1-3.4 and Propositions 3.3 and 3.4 still hold
under the new settings. Lemma 3.1 remains true as it does not rely on the differentiability
of f. Lemma 3.2 holds according to Lemma 4.1. Lemmas 3.3 and 3.4, Propositions 3.3 and 3.4
are valid because they only depend on Lemma 3.2 and the Fji-measurability of Yy, which is
guaranteed by item (b) of Proposition 4.1. The proof is complete. O

Remark 4.3. For Theorem /4.1, we can take the lower semicontinuous function p in (3.36) to
be f(-) —inf f, gap(-,S(f)), and gap(0,0c f(+)). It is clear that f(-) —inf f and gap(-,S(f)) are
lower semicontinuous. The lower semicontinuity of gap(0,0c f(+)) is also basic, but we provide a

proof in Lemma A.5 for completeness.

Theorem 3.1 also holds in the nonsmooth case since it is a weaker version of Theorem 3.2.
We can also extend Theorem 3.4 to the nonsmooth case. Specifically, Theorem 3.4 holds without

the differentiability assumption about f as long as we replace condition (3.43) with

P (hminf {IP’( min f°(Xj;0) >0 | fk,1> > p1 (0 ¢ 9o f(X3)) }) > 0. (4.4)

k—o0 €D

Similar to Lemma 4.1, condition (4.4) is equivalent to (3.44) with {Yj} defined by (4.2). This
leads to Lemma 3.6 and then Theorem 3.4.

Hence, we can conclude that our non-convergence theory for probabilistic direct search is still
valid in the nonsmooth case. Indeed, it is also possible to extend the convergence theory in [17]

to the nonsmooth case similarly, but it is beyond the scope of this paper.

26



5 Conclusion

We establish the non-convergence theory for probabilistic direct search. The proof technique is
mainly based on the analysis of the probability that the series of step sizes converges. Specifically,
the series of step sizes in Algorithm 2.2 converges with positive probability if the sequence
of polling direction sets is a sequence of p-probabilistic ascent sets with p > log~y/log(6~17),
where 6 and ~ are shrinking and expanding factors of the step size, respectively. More importantly,
in the typical case where we choose uniform distribution on the unit sphere in R™ as the
distribution of polling directions, the series of step sizes converges with probability 1 if the
number of polling directions in each iteration is strictly less than log,(1 — log 6/log~), which is
almost the counterpart of the convergence result. A weaker assumption is proposed to replace
the probabilistic ascent assumption while the nonzero probability of the convergence of the
series of step sizes is still guaranteed. The final part demonstrates the tightness of our non-
convergence analysis by explaining the reason why our analysis techniques cannot cover the case
of p-probabilistic ascent with p = p, instead of p > p, and providing a concrete example showing
that probabilistic direct search converges when {Dj} is a sequence of p,-probabilistic ascent sets.

Finally, we extend our results to the nonsmooth case.
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Basic lemmas

Lemma A.1 is a straightforward consequence of [16, Theorem 4.1.14].

Lemma A.1. If E and F are events, and G is a o-algebra with F € G, then P(EF | G) =P(E | G)1(F).

Lemma A.2 elaborates on the equivalence among several probability inequalities. It is useful for

interpreting the conditions in Definition 3.1 and 4.1.

Lemma A.2. Let p € [0,1] be a constant, E and F be events, and G be a o-algebra with E € G. Then

the following three inequalities are equivalent to each other:

P(F|G) > pl(E°), P(FNE®|G) > pl(E°), P(EUF|G) > p.

In particular, if E C F, then they are all equivalent to P(F | G) > p.

Proof. We refer to the three inequalities as (a), (b), and (c), in left-to-right order.

(a)
(b)

= (b): Since E° € G, Lemma A.l yields P(F N E° | G) =P(F | G)1(E°) > pl(E°).
= (¢): Since FEUF = EU(FNE®) and F € G, we have

P(EUF|G) = P(E|G)+P(FNE°|G) = L(E)+P(FNE®|G) > 1(E)+pl(E°) > p.
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(¢) = (a): Since (EUF)NE®=FNE°®and E° € G, Lemma A.1 leads to
P(F[G) > P(EUF)NE®[G) = P(EUF[G)L(E®) > pL(E").
(c) reduces to P(F' | G) > p when E C F. O

Lemma A.3 presents a basic connection between the conditional probability with respect to a o-algebra
and that with respect to an event.

Lemma A.3. Let E be an event and G be a o-algebra. Then P(E | G) > p if and only if P(E | F) > p
for all F € G with P(F) > 0.

Proof. For all F € G with P(F) > 0, the law of total probability and Lemma A.1 yield

E(P(EF|9)) _ E(P(E|9LF))

FEIR) = ="%@ =~ B

(A1)

IfP(E|G)>pa.s., then (A.l) yields P(E | F) > p. f P(E | F) > p for all F € G with P(F) > 0, then
the event £ = {P(E | G) < p} € G must have probability zero, or else (A.1) implies P(E | ) < p. O

In the following, for an event F with P(F) > 0, we let P be the probability measure defined
by Pr(E) =P(E | F) for any event E, and Pg(- | G) be the corresponding conditional probability with
respect to a o-algebra G. Moreover, we use Er to denote the expectation under Pr, and Ex(- | G) to

denote the corresponding conditional expectation with respect to a o-algebra G. It is well known that
E(X1(F)) = Ep(X)P(F) (A.2)
for any random variable X (see, e.g., [20, Section 8.1]). Consequently,
E(XL(F)) = E(Er(X | 9)1(F)), (A.3)
which can be obtained by multiplying both sides of the equality Ep(X) = Ep(Ep(X | G)) with P(F).

Lemma A.4. Let X be a random variable, F be an event with P(F) > 0, and G be a o-algebra.
(a) It holds that E(X1(F) | G) =Ep(X | G)P(F | G).

(b) For any p € [0,1], we have the following equivalence:
E(X1(F)|G) > pP(F|G) (P-a.s.) = Erp(X|G) > p (Pp-a.s.).

Proof. (a) Since Ep(X | G)P(F | G) is G-measurable, the definition of conditional expectation tells us
that we only need to verify

EEr(X |G)P(F|G)1(E)) = E(X1(F) 1L(E)) (A.4)
for all E € G. Denote Y = Ep(X | G)1(E). Then the left-hand side of (A.4) equals
EYP(F|G)) = E(YE(L(F) [§) = EEYL(F)|G)) = EVIL(F)).

To calculate E(Y1(F)), we first note that Y = Ep(X1(F) | G) and then apply (A.3) to the random
variable X1(F), obtaining

EYL(F)) = E(Ep(XL(E) | G)1(F)) = E(XL(E)|L(F)).
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Therefore, equality (A.4) holds.
(b) Denote Z = Ep(X | G). According to (a), we only need to prove the equivalence

ZP(F|G) > pP(F|G) (P-as.) = Z > p (Pp-as.). (A.5)
To this end, defining a nonnegative random variable W = 1(Z < p) P(F' | G), we observe that
{ZP(F|G) > pP(F|G)} = {Z=>p or P(F|G)=0} = {W =0} (A.6)

and that
Pr(Z <p)P(F) = P{Z <p}nF) = E(1(Z <p)P(F|G)) = E(W). (A7)

Therefore, we have the following two equivalences:
ZP(F | G) > pP(F | G) (P-as.) — W =0 (Pas.) = Pr(Z <p) = 0,

where the first one is due to (A.6), while the second comes from (A.7) and the fact that P(F') > 0.
Hence, (A.5) holds. The proof is complete. O

Remark A.1. Item (a) of Lemma A.4 is a generalization of equality (A.2). In light of (a), item (b) shows
that we can cancel out P(F | G) from both sides of the almost sure inequality E(X1(F) | G) > pP(F | G),

switching from P to Pg for the almost-sureness. When X = 1(E) for an event E, item (b) reduces to
P(EF|G) > pP(F|G) (P-a.s.) = Pr(E|G) > p (Pp-a.s.). (A.8)
Note that P(F'| G) = 1(F) if F € G, as is the case in Remark 3.8 and the proof of Lemma 3.4.
Lemma A.5. Let f : R™ — R be convex. Then pu(z) = gap(0, dc f(x)) is lower semicontinuous for x € R™.
Proof. Fix an x € R™ and an € > 0. By [34, Corollary 24.5.1], there exists a § > 0 such that
Ocf(y) COcf(x)+ B(0,e) for all y € B(x, ).

This implies that
gap(0,0c f(y)) > gap(0,0.f(x)) —e for all y € B(x,?).

Hence, p is lower semicontinuous. O

B Proofs of Proposition 3.1, Lemma 3.3, Lemma 3.4, and Proposition 4.2

To prove Proposition 3.1, we need Lemma B.1 as follows, particularly its item (b).

Lemma B.1. Let X and Y be random vectors. Consider a measurable function h with E(|h(X,Y)|) < oo,
and define H(y) = E(h(X,y)).

(a) If X is independent of Y, then E(h(X,Y)) =E(H(Y)).
(b) If X is independent of Y and a o-algebra G, then E(h(X,Y) | G) =E(H(Y) | G).
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Proof. Item (a) is a generalization of [16, Theorem 2.1.12], which considers random variables rather than
random vectors. We omit its proof, which is a straightforward extension of that for [16, Theorem 2.1.12].

Now we prove item (b) based on (a). Since E(H(Y) | G) is G-measurable, the definition of conditional
expectation tells us that we only need to verify

E(h(X,Y)I(E)) = EEH(Y) | G)L(E)) (B.1)

for all E € G. The right-hand side of (B.1) equals E(H (Y )1(E)) due to the fact that E € G and the tower
property of conditional expectation. Hence, we only need to check

E(h(X,Y)1(E)) = E(H(Y)1(E)). (B.2)
Denote 1(E) by Z and define Y = (Y, Z). Then X is independent of Y by our assumption. Define
h(z,9) = h(z,y)z and  H(j) =E(h(X, 7)),

where § = (y, z), with y and z having the same dimensions as Y and Z, respectively. Then we can apply
item (a) to h and H and obtain
E(h(X,T)) = E(H(Y)). (B.3)

In addition, by the definition of H and H, we have
H(9) = E(h(X,y)z) = H(y)z (B.4)

Plugging (B.4) and the definitions of & into (B.3), we obtain E(h(X,Y)Z) = E(H(Y)Z), which is (B.2).
This completes the proof. O

Remark B.1. Tuking expectation on both sides of the equality in item (b) of Lemma B.1, we can recover
item (a) by the tower property of conditional expectation. We also note that item (b) is a generalization

of [16, Example 4.1.7] (see also [9, page 148]), where G = o(Y).
Now we are ready to prove Proposition 3.1.
Proof of Proposition 3.1. It suffices to prove that
P({em (D, —Gk) <0}N{Gr #0} | Fre1) > 271 (Gg #0). (B.5)
Notice that the left-hand side of (B.5) can be rewritten as
E (L(cm (Dg, —Gi) < 0)1(Gy, #0) | Fi—1) - (B.6)

By item (b) of Lemma B.1, the conditional expectation (B.6) equals E (H(Gy) | Fr—1) with

27, it g #0,
0, if g =0,

H(g) = E(L(cm Dy, —g) <0)L(g #0)) =

where the last equality holds because ®, consists of m independent random vectors uniformly distributed

on the unit sphere. We then complete the proof by observing that
E(H(Gy) | Feo1) = E(27™L(Gr #0) | Frm1) = 271 (Gr #0),

where the last equality is because Gy, is Fi_1-measurable. O]
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To prove Lemma 3.3, we first present Lemma B.2.

Lemma B.2. Suppose that k > ko >0 and 0 < g <p<1. Then

; _ _ — _(g-p)?
%gg t(kq — ko) + p(k — ko)(e 1) < % (k + ko).
Proof. Considering ¢t = log(p/q), we only need to prove
)2
q — Ro)1og\p/q —Ro)lq—p) =~ — 0)- .
(ke — ko) og(p/) + (O — ko)l =) < — L2 (b 1) (8.7

Regard the left-hand side of (B.7) as a function of ¢ and denote it by ¢(g). Then

By the Taylor expansion of ¢(g) at the point p, there exists a £ € (g, p) such that

o0) = P0)a -+ 30" Oa-? < UG (34 8) < UGk O

Now we prove Lemma 3.3 using the moment method for deriving Chernoff bounds [24].
Proof of Lemma 3.3. The inequality in (3.21) holds trivially when k = ko, because 1 — Y =1 > ¢

when Fj, happens, implying that the conditional probability in (3.21) is zero. Let us focus on the
nontrivial case where k > kg > 0. Fixing an arbitrary ¢ > 0, we first make two claims: one is

k—1
P(1-Yy<q|Ey) < etk E <H e t1-Y0) Ek0> : (B.8)
l=ko
and the other is o
E (H e t1-YY) Ek0> < exp[p(k — ko)(e™ —1)]. (B.9)
l=ko

Once inequalities (B.8) and (B.9) are proved, we will have
P(1-Yy<q|Ex) < explt(kq— ko) +p(k —ko)(e™ = 1)],

and then the proof will be completed by Lemma B.2. We now prove the two claims by standard techniques.
For (B.8), by definition (3.7) of Y, definition (3.8) of Ej,, and Markov’s inequality, we have

]P’(l—?k §q\Ek0) = ]P’(exp{—tZ(l—Yg)] > o tha

AN
CDW
ol
_
=
X\
o
-
o)
L
T
=

where the last equality is because H’Zigl e t1=Ye) — ¢=tho when Ej, happens.

For (B.9), we use the tower property of conditional expectation to get

k—1 k=2
E (H e~ H(1-Y2) ]:k_0_1> E <E (e—t(l—qu) |]:k_2> H e t(1-Y2)

(=kq t=ko

]:ko—1> , (B.IO)
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where []F=2 e=t0=Y0) = 1 when k = ko + 1. By condition (3.17), we have
£=kg

E (e—t(l—ykfﬂ ’]:k—Q) < pe—t + (1 _p) < exp(pe_t _p)7 (Bll)

where the last inequality is because z +1 < e* for all z. By equality (B.10) and inequality (B.11), we have

k=1 k-2
E (H e_t(l—Yl) ’ ]:k01> < exp[p(e—t _ 1)] E <H e—t(l—Yf) ‘ ]:k01>
t=kqo t=ko (B.12)
< explp(k — ko)(e™" = 1)],

where the second inequality follows from the recursive application of the first one. Since P(Ey,) > 0 by
Remark 3.6, inequality (B.12) implies (B.9) by Lemma A.3. O

Lemma 3.4 is a straightforward consequence of Lemma A.4, or, more precisely, Remark A.1.

Proof of Lemma 3.4. Since p > 0, the probability measure P(- | Ej,) is well defined according to
Remark 3.6. Fix an integer k > 0. Then Ej, € Fry—1 C Frotb—1 = Fi_1 by the definitions of {Fr}
and {F}. Thus, condition (3.17) and Lemma A.1 yield

P({Yi = 0} N Ep, | Fim1) = P(Yegsr = 0| Frgi-1) 1(Ery) > pL(Eg,)-
Hence, recalling that P is P(- | Ej,), we have P(Y, = 0 | Fr_1) > p according to Remark A.1. O
Now we prove Proposition 4.2. It is similar to the proof of Proposition 3.1.

Proof of Proposition 4.2. First, the function A(D,x) = 1(mingep f°(z;d) > 0)1(0 € O f(x)) is Borel
by the same argument as in the proof of Proposition 4.1. Then similar to the proof of Proposition 3.1, by

item (b) of Lemma B.1 and item (a) of Proposition 4.1, we only need to show that

2-m i 0 ¢ 9 f(x),
0, if 0 € O f(x).

It suffices to prove that when 0 ¢ 0. f(z), we have

P(f°(z;0) >0) >

N | —

where 0 is uniformly distributed on the unit sphere in R™, which is true since {d : f°(x;d) > 0} contains a

half-space {v: g"v > 0} with g being any element in O f(x). ]

C (Non-)Measurability of iterates with respect to polling directions

In this section, we discuss when the iterates of Algorithm 2.2 are measurable with respect to the polling
directions, and when they are not. Often omitted in literature, this type of discussion is essential for the
mathematical rigour of our analysis. Indeed, as we will see in Example C.1, the measurability can fail for
certain implementations of Algorithm 2.2. For the concept of measurability, we refer to [16, Section 1.2].

Lemma C.1 establishes the measurability of the iterates for certain implementations of Algorithm 2.2,
covering [17, Algorithm 2.1]. The proof is elementary, but it clarifies the role of the polling strategy in the

measurability.
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Lemma C.1. Let m be a positive integer and f be continuous on R™. Consider Algorithm 2.2 with the

following configuration for each k > 0.

(a) Generate Dy = {0},..., 00"} with d},,..., 07" being random vectors.

(b) Set the order of function evaluations as f(Xy + AgdL), ..., f(Xk + Ard") before polling.
(c) Use either opportunistic polling or complete polling.

Let F2 = 0(Do,...,Dy) for each k > 0 and F2, = {0,Q}. Then Xy is F_,-measurable for each k > 0.

Proof. We will prove by induction that Xj; and A are both f,?_l—measurable for each k > 0. The base
case k = 0 holds trivially since X, and Ay are not random. Assuming that X and Ay, are F;°_;-measurable,
let us prove that X1 and Agy; are both .7-",? -measurable. Before starting, note that the induction
hypothesis implies that X} and Ay are f,?—measurable since ]—']?_1 - .7-',?. Define 2? = 0 and

Vi= f(Xp+ Agdl), i=0,1,...,m.

Then each V? is .7-',? -measurable since f is continuous. p(Ay) is also .7-',? -measurable as p is monotone.

Now, we consider the case of complete polling. In this case,

Xiyr = Xe+ Ay Y W7, (C.1)
=1

where W (i = 1,...,m) is the indicator defined by
W' = 1(i is the smallest integer such that V' = min{V"',...,V"™}, and V° — V' > p(Ay)).

Note that at most one of W1,... W™ is 1, and they are all 0 if the complete polling fails. Moreover,

i—1 m
wh= | JJ1(v <v?) I 1(v <v7) [1(V° = V' > p(Ar)),
j=1 j=i+1

which is F?-measurable due to the F;°-measurability of V°,..., V™ and p(Ay). Therefore, Xy 1 is F2-
measurable according to (C.1). Consequently, Ay is F2-measurable by the recurrence relation (2.3)
and the induction hypothesis. The induction finishes for complete polling.

The case of opportunistic polling can be handled similarly. In this case, equation (C.1) holds with

Wi = ]l(i is the smallest integer such that V0 — V* > p(Ak))

=TT~ Ve < o) [1(V° V> p(Ar))

which is .7-",? -measurable. Everything else is the same as complete polling. O

However, if the polling in Algorithm 2.2 involves randomness beyond the polling directions, then Xy
may not be .F,?_l—measurable. This is illustrated by Example C.1. For this reason, our analysis uses
Fr =0(Do,X1,...,Dk, Xp11) rather than ]-',? as the filtration.

Example C.1. Let m be a positive integer and f be continuous on R™. Consider Algorithm 2.2 with the
following configuration for each k > 0.
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a) Generate Dy = {0}, ..., 00"} with d},..., 07 being random vectors.

(a)

(b) Pick a random permutation m of {1,...,m}.

(¢) Set the order of function evaluations as f(Xx + Akazk(l)), v J( Xk + AkDZk(m)) before polling.
)

(d) Use opportunistic polling.

Since Xy, depends on mp_1, we cannot guarantee its f,?_l-measumbility if mp_1 is not f,?_l—measumble,
or informally, if m_1 contains randomness beyond F;2 . Similar to [15, Section 4], we can define w1
by ranking the directions in ®g_1 according to a stochastic oracle independent of the polling directions.
Or we simply pick the sequences {m} and {Dy} independently. In these cases, X can be measurable with

respect to o(Dg, 7o, ..., Dk—1,Tk—1), but not with respect to }",?_1.

D Discussions about the definition of probabilistic descent

Comparing Definition 2.2 of probabilistic descent with Definition 3.1 of probabilistic ascent, one may ask
why the latter involves 1(Gj # 0) whereas the former does not. To answer this question, we propose
an alternative definition of probabilistic descent in Definition D.1, with 1(G} # 0) playing a role like in
Definition 3.1.

Definition D.1 (Alternative definition of probabilistic descent). Identical to Definition 2.2 except that

we replace condition (2.4) with
P(cm (Dg, —Gi) > K| Fr—1) > pL(Gy #0) for each k > 0. (D.1)

Definition D.1 is equivalent to Definition 2.2 if cm(-,0) > & (e.g., [17] defines cm(-,0) = 1). Indeed,
we have {G, = 0} C {em(Dy, —Gy) > k} in this case, ensuring the equivalence by Lemma A.2.
Definition D.1 has the advantage that it is invariant no matter how we choose the value of cm( -, 0),

because the inequality in condition (D.1) is equivalent to

P({em(Dg, =Gr) = £} N {Gr # 0} | Fi1) = pl(Gr # 0)

according to Lemma A.2. In contrast, Definition 2.2 does rely on this value, as can be illustrated by an
example similar to Example 3.1. In case one defines cm(-,0) < & (e.g., cm(-,0) = 0 may be appealing for
symmetry), Definition 2.2 will be more restrictive than Definition D.1 for the same reason explained in

Remark 3.1. Nevertheless, this does not affect [17], which imposes cm(-,0) = 1 as mentioned before.
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