
Non-convergence Analysis of Probabilistic Direct Search

Cunxin Huang∗ Zaikun Zhang†

February 15, 2026

Abstract

Direct-search methods are a major class in derivative-free optimization. The combination

of direct search and randomization techniques leads to an efficient variant, namely probabilistic

direct search. Its convergence analysis has been thoroughly explored in recent years under

the probabilistic descent assumption. However, a natural question arises: how will this

algorithm behave when assumptions for convergence are not met? In this paper, we analyze

the non-convergence of the algorithm when the polling directions form probabilistic ascent

sets. Its analysis is closely related to the discussion of a random series. We further show that

our non-convergence analysis is tight. Our non-convergence theory completes the analytical

framework for the probabilistic direct search, guiding the selection of the polling directions in

practice.

Keywords: Derivative-free optimization, Direct search, Probabilistic method, Non-convergence

analysis

1 Introduction

When will your algorithm fail to converge? This question is arguably as important as asking when

it will converge, but is often not studied as much. A systematic investigation of this question

may deepen our understanding about the behavior of the algorithm, guide its implementation

in practice, and provide new perspectives on its convergence analysis. Our paper will address

this question for the probabilistic direct search method [17] for the unconstrained optimization

problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R is a smooth and convex function.

Direct search [21] is a class of derivative-free optimization (DFO) methods. They define

iterates based on comparisons of function values sampled following a certain scheme without
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explicitly building models for the objective or constraint functions. There are several types of

direct search methods, and we will focus on the directional direct search based on sufficient

decrease [14, Section 7.7] for solving (1.1). In the worst case, the deterministic version of

this method needs to evaluate at least n+ 1 function values at each iteration, which becomes

impractical when n is modestly large. To overcome this difficulty, Gratton et al. [17] propose

a randomized version of this method, which we will refer to as the probabilistic direct search.

They show that given shrinking factor θ and expanding factor γ, the algorithm enjoys global

convergence if the sequence of polling direction sets is a sequence of p0-probabilistic κ-descent

sets with some positive κ and

p0 =
log θ

log(γ−1θ)
. (1.2)

In particular, if γ > 1 and we choose each polling direction set to be a collection of m independent

random directions following the uniform distribution on the unit sphere, which is the typical

choice in practice [17], then a sufficient condition for global convergence is

m > log2

(
1− log θ

log γ

)
.

This result not only provides more choices of polling direction sets for direct search, but also

guides the analysis of the probabilistic trust-region model [18].

A natural question arises: what will happen if m ≤ log2(1 − log θ/log γ)? Furthermore,

we would like to ask: is the p0-probabilistic κ-descent assumption essential for the conver-

gence of probabilistic direct search? From a broader perspective, we are interested in whether

“submartingale-like” assumptions are essential, which were first introduced in [3] and are widely

used in the convergence analysis of stochastic oracles including randomized versions (some called

probabilistic models) of optimization methods such as trust region [3, 37], line search [5, 8],

and cubic regularization [8]. These questions are both theoretically interesting and practically

meaningful, as the answers will provide a complete view of the behavior of probabilistic models

and guide the selection of algorithmic parameters in practice.

In this paper, we answer the first two questions as a first step. We establish the non-

convergence theory of probabilistic direct search and prove that the algorithm will not converge if

the sequence of polling direction sets is a sequence of p-probabilistic ascent sets (Definition 3.1)

with p > 1 − p0 and the objective function is smooth and convex. In particular, for the

above-mentioned typical case, the algorithm will not be globally convergent if

m < log2

(
1− log θ

log γ

)
. (1.3)

It is still an open question whether the algorithm will converge when inequality (1.3) becomes

an equality, although log2(1− log θ/ log γ) is not an integer in most cases.

The remaining part of this paper is organized as follows. In Section 2, we provide a concise

review of DFO and introduce the necessary concepts of probabilistic direct search. Section 3
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establishes the non-convergence theory, forming the main ideas of this paper. Additionally, we

show that the probabilistic direct search with typical polling direction sets will not converge

if m < log2(1− log θ/ log γ) by our non-convergence result. Moreover, we construct an example

to demonstrate that our probabilistic ascent assumption with p > 1− p0 cannot be weakened

to p ≥ 1− p0. A relaxation of the probabilistic ascent assumption is later discussed. We extend

our non-convergence results to the nonsmooth case in Section 4. We summarize our findings and

draw conclusions in Section 5.

2 Preliminaries

To put our research in context, we briefly review the landscape of DFO, which in recent decades

has aroused great interest in both academic research and practical applications [2, 14, 22]. Within

the existing body of literature, DFO methods are broadly classified into two primary categories:

direct-search methods and model-based methods. Detailed discussions about direct-search

methods can be found in [21], and notable examples of direct search include the Nelder-Mead

simplex method [25], the MADS methods [1, 23], and BFO [26, 27]. In contrast to direct-search

methods using simple comparisons of function values, model-based methods construct local

models through sampling under a trust-region [13] or line-search [4] framework. A wealth of

classical literature on model-based methods can be found in, for example, [4, 13, 29, 30, 31, 32],

with some well-known methods and software in this category including Powell’s methods and

PDFO [33]. Recently, randomization techniques are introduced to both categories, and we refer

to [3, 6, 7, 17, 18, 19].

In what follows, we review the framework of probabilistic direct search and introduce the

necessary notations. Subsection 2.1 introduces the fundamental framework of direct search based

on sufficient decrease, whereas Subsection 2.2 concentrates on the randomization techniques

inherent in this framework along with the convergence theory.

2.1 Direct search based on sufficient decrease

Algorithm 2.1 presents a direct search method for solving problem (1.1). Inequality (2.1) is called

the sufficient decrease condition, where the forcing function ρ : (0,∞) → (0,∞) is nondecreasing

and ρ(α) = o(α) when α → 0+, a typical choice being ρ(α) = cα2/2 with a positive constant c.

Step 2 of Algorithm 2.1 is known as polling [14, Chapter 7], and the directions in Dk are

called the polling directions. In practice, a search step may be taken at the beginning of each

iteration (see [21, Algorithm 3.2]). As in [17], we omit such an option and focus on polling.

Remark 2.1. To implement Algorithm 2.1, a polling strategy is needed to choose the direction dk

if there are multiple candidates satisfying (2.1). Two common strategies exist. One is to choose

the direction that decreases the function value the most (pick the first in case of a tie), which is

called complete polling. The other is to take the first direction fulfilling (2.1), which is known as
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Algorithm 2.1 Deterministic direct search based on sufficient decrease

Select x0 ∈ Rn, α0 > 0, θ ∈ (0, 1), γ ∈ [1,∞), and a forcing function ρ.

For k = 0, 1, 2, . . . , do the following.

1. Generate a set of directions Dk ⊆ Rn deterministically.

2. If there exists a direction dk ∈ Dk such that

f(xk)− f(xk + αkdk) > ρ(αk), (2.1)

then set xk+1 = xk + αkdk, αk+1 = γαk; otherwise, set xk+1 = xk, αk+1 = θαk.

opportunistic polling. We also need to set an order for evaluating {f(xk + αkd) : d ∈ Dk} in the

polling. A strategy suggested in [15, Section 4] is to decide the order by an oracle that can help

us rank the decreases of f along the polling directions, the oracle in [15] being an approximate

descent direction (called a descent indicator). For generality, Algorithm 2.1 deliberately keeps the

strategies of polling and ordering unspecified.

The analysis of Algorithm 2.1 depends on the concept of the cosine measure defined below.

Definition 2.1 (Cosine measure). Let D be a finite and nonempty set of nonzero vectors in Rn.

The cosine measure of the set D with respect to a nonzero vector v, denoted by cm(D, v), is

defined as

cm(D, v) = max
d∈D

dTv

∥d∥∥v∥
,

where ∥·∥ is the Euclidean norm. In addition, the cosine measure of the set D, denoted by cm(D),

is defined as cm(D) = minv∈Rn\{0} cm(D, v).

Remark 2.2. Definition 2.1 does not specify the value of cm( · , 0). As a convention, we

suppose that it is defined to be a constant in [−1, 1] (e.g., [17] defines cm( · , 0) = 1). We do not

particularize this constant, because its value will not affect our non-convergence analysis. See

Remark 3.2 for more details.

If f is smooth and there exists a constant κ > 0 such that cm(Dk) ≥ κ for each k ≥ 0, then

Algorithm 2.1 converges under some technical assumptions. See [21, Theorem 3.11].

2.2 Probabilistic direct search and its convergence

Algorithm 2.2 presents the probabilistic direct search method, which was initially proposed in [17].

It is the same as Algorithm 2.1 except that the polling directions in Step 1 are random vectors

over a probability space (Ω,F ,P). Consequently, the iterates and the step sizes are also random

in general, although the starting point and the initial step size are still chosen deterministically.
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Algorithm 2.2 Probabilistic direct search based on sufficient decrease

Identical to Algorithm 2.1 except that the polling directions in Step 1 are generated randomly.

For a clear discussion of Algorithm 2.2, it is necessary to use different notations for random

elements and their realizations. Similar to [17], we adopt the notations summarized in Table 1.

Additionally, we denote

Gk = ∇f(Xk).

Table 1: Notations for random elements and their realizations

Polling direction set Iterate Step size

Random element Dk Xk Ak

Realization Dk xk αk

Similar to [17, Assumption 2.3], we make the following blanket assumption on the sequence

of polling direction sets {Dk} to simplify our presentation, although our analysis remains valid

after slight modifications if the lengths of the polling directions are only uniformly bounded.

Blanket Assumption. For each k ≥ 0, the set Dk is nonempty and consists of finitely many

unit random vectors.

The investigation into Algorithm 2.2 heavily relies on the concept of σ-algebras and conditional

probability with respect to them [16, Section 4.1]. For each k ≥ 0, we define

Fk = σ(D0, X1, . . . , Dk, Xk+1), (2.2)

which is the σ-algebra generated by D0, X1, . . . , Dk, Xk+1. In addition, we define

F−1 = {∅, Ω}.

Roughly speaking, Fk captures the information about the polling directions and iterates up

to the end of iteration k, when Xk+1 has been generated but Dk+1 has not. Note that Fk

does not involve X0, which is deterministically chosen. Obviously, Dk is Fk measurable

and Xk is Fk−1-measurable for each k ≥ 0. If f is continuously differentiable, then Gk is

also Fk−1-measurable. In addition, Ak is Fk−1-measurable by mathematical induction based on

the recurrence

Ak+1 = γ1(Xk+1 ̸=Xk)θ1(Xk+1=Xk)Ak, (2.3)

which holds because we have {Ak+1 = γAk} = {Xk+1 ̸= Xk} and {Ak+1 = θAk} = {Xk+1 = Xk}
in Algorithm 2.2.

The global convergence theory of probabilistic direct search can be stated as follows.
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Definition 2.2 ([17, Definition 3.1]). Let p ∈ [0, 1] and κ ∈ [−1, 1]. Consider Algorithm 2.2

with f being continuously differentiable on Rn. The sequence {Dk} is said to be a sequence

of p-probabilistic κ-descent sets if it satisfies

P (cm (Dk,−Gk) ≥ κ | Fk−1) ≥ p for each k ≥ 0. (2.4)

Theorem 2.1 ([17, Theorem 3.4]). Consider Algorithm 2.2 with f being continuously differen-

tiable and bounded below on Rn, and ∇f being Lipschitz continuous on Rn. If {Dk} is a sequence

of p0-probabilistic κ-descent sets with p0 being defined in (1.2) and κ being a positive constant,

then P(lim infk ∥Gk∥ = 0) = 1.

Remark 2.3. The σ-algebra Fk defined in (2.2) will reduce to σ(D0, . . . ,Dk−1) if we assume

that Xk is measurable with respect to σ(D0, . . . ,Dk−1). As clarified in Lemma C.1, this assumption

is fulfilled by implementations of Algorithm 2.2 considered in [17]. However, such an assumption is

not guaranteed if we allow the unspecified polling strategy in Algorithm 2.2 to involve randomness

beyond the polling directions (see Example C.1). Therefore, we choose not to impose such

an assumption. In this sense, Theorem 2.1 is indeed a slightly generalized version of [17,

Theorem 3.4], but the proof remains essentially the same.

Remark 2.4. The probability in (2.4) is a probability with respect to a σ-algebra, which is a

random variable (see [16, Section 4.1]). Following the convention in probability theory (e.g., [16,

Page 179] and [20, Page 195]), the inequality in Definition 2.2 should be understood in the almost

sure sense, that is,

P (cm (Dk,−Gk) ≥ κ | Fk−1) ≥ p a.s. for each k ≥ 0.

This is because the conditional probability P( · | Fk−1), as a random variable, is only defined up

to almost sure equivalence. Henceforth, all the equalities and inequalities should be understood in

this way if they involve conditional probabilities or expectations with respect to a σ-algebra, and

we will not repeat this point every time.

In practice, Dk is typically chosen to be m independent random vectors uniformly distributed

on the unit sphere in Rn. Theorem 2.1 leads to Corollary 2.1 for this typical implementation.

Corollary 2.1 ([17, Corollary B.4]). Consider Algorithm 2.2 with f satisfying the assump-

tions in Theorem 2.1. Let γ > 1 be a constant, {Dk} be mutually independent, and each Dk

be a set of m independent random vectors uniformly distributed on the unit sphere in Rn.

Then P(lim infk ∥Gk∥ = 0) = 1 if m > log2(1− log θ/log γ).
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2.3 Notations

For an event E, we use 1(E) to denote the random variable such that

1(E) =

1, if E happens,

0, otherwise.

The abbreviation “a.s.” stands for “almost surely”. The Euclidean norm is denoted by ∥ · ∥,
and B(x, r) represents the open Euclidean ball centered at x ∈ Rn with radius r > 0. As in [35,

page 113], we define the gap distance between two sets A,B ⊆ Rn as

gap(A,B) = inf{∥a− b∥ : a ∈ A, b ∈ B},

which is supposed to be ∞ if A = ∅ or B = ∅; if A is a singleton {a}, then we write gap(a,B)

instead of gap({a}, B). We denote

inf f = inf
x∈Rn

f(x),

S(f) = {x ∈ Rn : f(x) = inf f}.

Note that inf f may be −∞ and S(f) may be empty. As a convention, we define the summation

and product over an empty index set as 0 and 1, respectively, which includes the cases of i > j

in
∑j

k=i and
∏j

k=i.

3 Probabilistic ascent and non-convergence analysis

How will Algorithm 2.2 behave if the polling direction sets {Dk} fail to satisfy the probabilistic

descent condition in Theorem 2.1? This section will address this question by introducing the

concept of probabilistic ascent and establishing the non-convergence theory of probabilistic direct

search. Before diving into the analysis, we first provide a numerical example in Subsection 3.1 to

illustrate the failure of convergence of Algorithm 2.2 when the probabilistic descent condition

does not hold. Then we introduce the concept of probabilistic ascent in Subsection 3.2. After

that, we establish the non-convergence of probabilistic direct search via Markov’s inequality in

Subsection 3.4 and then via a Chernoff bound in Subsection 3.5. A weaker assumption will be

proposed in Subsection 3.6 to broaden the non-convergence analysis.

3.1 Failure of global convergence: a numerical illustration

We conduct a simple test to illustrate the behavior of Algorithm 2.2 when the probabilistic descent

condition in the convergence theory is not satisfied. We will focus on the typical implementation

of the algorithm discussed in Corollary 2.1, with each Dk being a set of m random vectors

independently and uniformly distributed on the unit sphere.
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For simplicity, we choose the objective function f(x) = xTx with x ∈ R2. We set the forcing

function ρ(α) = 10−3α2, the initial point x0 = (−10, 0)T, the initial step size α0 = 1, the

shrinking factor θ = 1/4, and the expanding factor γ = 3/2. The polling sets are mutually

independent, and each of them consists of m = 2 random vectors independently and uniformly

distributed on the unit sphere in R2. Note that log2(1 − log θ/ log γ) ≈ 2.14 > m, violating

the condition in Corollary 2.1 for convergence. The polling strategy is complete polling. The

algorithm is terminated when the step size drops below the machine epsilon (≈ 2× 10−16) or the

number of iterations reaches 103. We run the algorithm for 104 times independently. The results

are shown in Figure 1, where the circle represents the initial point, the pentagram represents the

global minimizer, and each dot represents the best iterate (i.e., the one with the lowest function

value) of the algorithm in a run. As we can see, many of these dots are far away from the global

minimizer. Even though we cannot draw any rigorous conclusion about the asymptotic behavior

of Algorithm 2.2 based on this test, the results motivate us to conjecture that the algorithm fails

to be globally convergent under this setting. We will confirm this conjecture in the subsequent

analysis (see Corollary 3.1).

Initial point Global minimizer Output point of each run of Algorithm 2.1

Figure 1: A test illustrating failure of convergence of Algorithm 2.2
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3.2 Probabilistic ascent

Our non-convergence analysis relies on the concept of probabilistic ascent defined below. As

mentioned in Remark 2.4, condition (3.1) in this definition should be understood in the almost

sure sense.

Definition 3.1 (p-probabilistic ascent). Let p ∈ [0, 1]. Consider Algorithm 2.2 with f being

continuously differentiable on Rn. The sequence {Dk} is said to be a sequence of p-probabilistic

ascent sets if it satisfies

P (cm (Dk,−Gk) ≤ 0 | Fk−1) ≥ p1 (Gk ̸= 0) for each k ≥ 0. (3.1)

Proposition 3.1 shows that the sequence {Dk} specified in Corollary 2.1 is a sequence

of p-probabilistic ascent sets with p = 2−m. The proof is given in Appendix B.

Proposition 3.1. Consider Algorithm 2.2 with f being continuously differentiable on Rn.

Let {Dk} be mutually independent, and each Dk be a set of m ≥ 1 independent random vectors

uniformly distributed on the unit sphere in Rn. Then {Dk} is a sequence of p-probabilistic ascent

sets with p = 2−m.

Remark 3.1. It may be tempting to define p-probabilistic ascent as

P (cm (Dk,−Gk) ≤ 0 | Fk−1) ≥ p for each k ≥ 0. (3.2)

If we adopted this definition instead of Definition 3.1, then all the results requiring p-probabilistic

ascent in this paper would still hold, since (3.2) is stronger than (3.1). However, in case one

defines cm( · , 0) to be positive (e.g., cm( · , 0) = 1 as in [17]), condition (3.2) with p > 0 will

actually enforce

P(Gk = 0) = 0 for each k ≥ 0, (3.3)

meaning that the algorithm almost never steps on a stationary point, which is a restriction that

we do not want to impose. To see why (3.2) implies (3.3) when p > 0 and cm( · , 0) > 0, let us

assume P(Gk = 0) > 0. Then (3.2) and Lemma A.3 will lead to the contradiction that

0 < p ≤ P(cm (Dk,−Gk) ≤ 0 | Gk = 0) = P(cm (Dk, 0) ≤ 0 | Gk = 0) = 0.

Complementing Remark 3.1, Example 3.1 illustrates the difference between condition (3.1) in

Definition 3.1 and condition (3.2). It also serves as an example to show that (3.3) is undesirable

to impose when analyzing randomized algorithms like Algorithm 2.2, even though it is not

uncommon to assume that algorithms never step on a stationary point in the deterministic

case (e.g. [28, Section 1]).

Example 3.1. Let n = 1, f(x) = x2, and x0 = α0 = 1. Consider Algorithm 2.2 with Dk = {dk},
where dk is a random variable independent of Fk−1 and takes values ±1, each with probability 1/2.
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By Proposition 3.1, {Dk} is a sequence of 1/2-probabilistic ascent sets as defined in Definition 3.1.

However, whether {Dk} satisfies condition (3.2) with p = 1/2 depends on the definition of cm( · , 0).
Suppose that we define cm( · , 0) = 1 following [17]. Then, as was pointed out in Remark 3.1,

condition (3.2) with p > 0 necessitates (3.3), but we can check that

P(G1 = 0) = 1/2,

violating (3.3) for k = 1. Consequently, (3.2) cannot hold for any p > 0 if cm( · , 0) = 1.

In Example 3.1, condition (3.1) holds no matter how we define cm( · , 0). Proposition 3.2

shows that such a condition is indeed always independent of cm( · , 0). This proposition can be

obtained by applying Lemma A.2 to the events E = {Gk = 0} and F = {cm(Dk,−Gk) ≤ 0}
while noting that E ∪ F = {mind∈Dk

dTGk ≥ 0}.

Proposition 3.2. Let p ∈ [0, 1]. Consider Algorithm 2.2 with f being continuously differentiable

on Rn. For each k ≥ 0, the following inequalities are equivalent to each other.

(a) P(cm(Dk,−Gk) ≤ 0 | Fk−1) ≥ p1(Gk ̸= 0).

(b) P({cm(Dk,−Gk) ≤ 0} ∩ {Gk ̸= 0} | Fk−1) ≥ p1(Gk ̸= 0).

(c) P(mind∈Dk
dTGk ≥ 0 | Fk−1) ≥ p.

Remark 3.2. Neither item (b) nor (c) in Proposition 3.2 relies on the definition of cm( · , 0).
Therefore, condition (3.1) based on (a) is independent of cm( · , 0). Consequently, no matter how

we define cm( · , 0), Definition 3.1 of probabilistic ascent is invariant, and the results in this paper

hold without any modification.

Remark 3.3. Assuming P(Gk ̸= 0) > 0, by Proposition 3.2 and item (b) of Lemma A.4 (see

also Remark A.1), we can rewrite the inequality in Definition 3.1 as

Pk(cm (Dk,−Gk) ≤ 0 | Fk−1) ≥ p (Pk-a.s.), (3.4)

where Pk is the probability measure defined by Pk(E) = P(E | Gk ≠ 0) for all E ∈ F , and

Pk( · | Fk−1) is the corresponding conditional probability with respect to Fk−1. Inequality (3.4)

leads to the following interpretation of probabilistic ascent in Definition 3.1: conditioned on Gk ̸= 0,

the probability of cm(Dk,−Gk) ≤ 0 is at least p regardless of Fk−1. We choose not to use (3.4)

in Definition 3.1 to avoid any assumption about P(Gk ̸= 0).

Before ending this section, we refer interested readers to Appendix D, which discusses an

alternative definition of probabilistic descent (see Definition 2.2) using a condition similar to (3.1).
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3.3 Key ingredients of our analysis

Our analysis will heavily depend on the 0-1 process {Yk} with

Yk = 1

(
min
d∈Dk

dTGk < 0

)
for each k ≥ 0. (3.5)

For each k ≥ 0, we define

Uk =
k−1∏
ℓ=0

γYℓθ1−Yℓ , (3.6)

Y k =
1

k

k−1∑
ℓ=0

Yℓ, (3.7)

Ek =
k−1⋂
ℓ=0

{Yℓ = 0}, (3.8)

with the convention that

U0 = 1, Y 0 = 0, and E0 = Ω. (3.9)

Note that {Ek} is a nonincreasing sequence of events. In addition, since 0 < θ < 1 ≤ γ, we have

Ek =
k−1⋂
ℓ=0

{Uℓ = θℓ}. (3.10)

We can check that Yk is Fk-measurable, while Uk, Y k, and Ek are Fk−1-measurable.

Assuming the convexity of f , Lemma 3.1 links the iterates {Xk} with the sequences {Yk}
and {Uk}. As will be detailed in the proof, the convexity of f provides a useful connection

between Yk and iteration k of Algorithm 2.2: if Yk = 0, then the descent condition (2.1) cannot be

satisfied, leading to Xk+1 = Xk and Ak+1 = θAk, which is essentially why the lemma holds. Note

that a differentiable convex function is continuously differentiable [34, Theorem 25.5]. Hence, we

can still use Definition 3.1 of probabilistic ascent if we assume f to be differentiable and convex.

Lemma 3.1. Consider Algorithm 2.2 with f being differentiable and convex on Rn. Then

sup
k≥0

∥Xk − x0∥ ≤ α0

∞∑
k=0

YkUk ≤ α0

∞∑
k=0

Uk. (3.11)

Proof. For each k ≥ 0, we note that

∥Xk+1 −Xk∥ ≤ YkAk. (3.12)

Indeed, if Yk = 0, then Dk contains no descent direction, so that the descent condition (2.1) can

never be satisfied due to the convexity of f , leading to Xk+1 = Xk and thus (3.12); when Yk = 1,
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inequality (3.12) holds because of our blanket assumption that Dk contains only unit vectors.

Following a similar logic, we have

Ak+1 ≤ γYkθ1−YkAk, (3.13)

because Ak+1 = θAk if Yk = 0 and Ak+1 ≤ γAk otherwise. Recalling A0 = α0 and the

definition (3.6) of Uk, we use (3.13) recursively and obtain

Ak ≤ α0

k−1∏
ℓ=0

γYℓθ1−Yℓ = α0Uk. (3.14)

Since X0 = x0, by (3.12) and (3.14), we have

∥Xk − x0∥ ≤
k−1∑
ℓ=0

∥Xℓ+1 −Xℓ∥ ≤
k−1∑
ℓ=0

YℓAℓ ≤ α0

k−1∑
ℓ=0

YℓUℓ ≤ α0

k−1∑
ℓ=0

Uℓ, (3.15)

where the last inequality is because Yℓ ≤ 1. Finally, we get (3.11) by taking the supremum

over k ≥ 0 in (3.15).

Remark 3.4. Lemma 3.1 plays a crucial role in our non-convergence analysis. Roughly speaking,

the main idea of our analysis is to show that

P

(
sup
k≥0

∥Xk − x0∥ < ζ

)
> 0 (3.16)

for some ζ > 0, so that {Xk} is bounded away from S(f) with positive probability as long as x0

is sufficiently far away from S(f), namely,

gap(x0,S(f)) ≥ ζ.

Lemma 3.1 reduces the work of establishing (3.16) to studying
∑∞

k=0 YkUk or
∑∞

k=0 Uk. Our

main results Theorems 3.1, 3.2, 3.3, and 3.4 all follow this idea, directly or indirectly.

The sequence {Yk} also provides us with an equivalent definition of probabilistic ascent as

stated in Lemma 3.2. This equivalence is a simple consequence of Proposition 3.2.

Lemma 3.2. Consider Algorithm 2.2 with f being continuously differentiable on Rn. For

any p ∈ [0, 1], {Dk} is a sequence of p-probabilistic ascent sets if and only if the sequence {Yk}
defined by (3.5) satisfies

P (Yk = 0 | Fk−1) ≥ p for each k ≥ 0. (3.17)

Condition (3.17) is foundational to our analysis in Subsections 3.4 and 3.5. The behaviour of

the sequences {Yk} and {Uk} needed in our analysis follows from (3.17) without relying on the

specifics of Algorithm 2.2.
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3.4 Non-convergence analysis via Markov’s inequality

In this subsection, we use Markov’s inequality to conduct the non-convergence analysis as a

preliminary step. The main idea of the following Theorem 3.1 is that under suitable assumptions,

the expectation of the series of step sizes is finite.

Theorem 3.1. Consider Algorithm 2.2 with f being differentiable and convex on Rn. If {Dk} is

a sequence of p-probabilistic ascent sets with p > (γ − 1)/(γ − θ), then we have

P (gap({Xk},S(f)) > 0) > 0

provided that gap(x0,S(f)) > α0/[1− γ + p(γ − θ)].

Proof. We prove that P(gap({Xk},S(f)) = 0) < 1. Note that

{
gap({Xk},S(f)) = 0

}
⊆

{
sup
k≥0

∥Xk − x0∥ ≥ gap(x0,S(f))

}
⊆

{ ∞∑
k=0

Uk ≥ gap(x0,S(f))
α0

}
,

where the last inclusion is due to Lemma 3.1. Therefore, it suffices to show that

P

( ∞∑
k=0

Uk ≥ gap(x0,S(f))
α0

)
< 1.

Define β = 1/[1−γ+p(γ−θ)]. Recalling the assumption that gap(x0,S(f)) > α0β and Markov’s

inequality, we only need to prove that

E

( ∞∑
k=0

Uk

)
≤ β. (3.18)

With our assumption on p ensuring 0 < γ(1−p)+θp < 1, we have β =
∑∞

k=0[γ(1−p)+θp]k. Mean-

while, Tonelli’s theorem [36, page 420] (also [16, Theorem 1.7.2]) yields E(
∑∞

k=0 Uk)=
∑∞

k=0 E(Uk).

Thus, the proof of (3.18) can be reduced to establishing

E(Uk) ≤ [γ(1− p) + θp]k for each k ≥ 0. (3.19)

The proof of (3.19) is standard. For each k ≥ 0, using the tower property of conditional

expectation and the definition of {Uk} in (3.6), we have

E(Uk+1) = E
(
E
(
γYkθ1−YkUk | Fk−1

))
= E

(
E
(
γYkθ1−Yk | Fk−1

)
Uk

)
,

where the last equality is because Uk is Fk−1-measurable. By Lemma 3.2,

E
(
γYkθ1−Yk | Fk−1

)
= γP(Yk = 1 | Fk−1) + θP(Yk = 0 | Fk−1) ≤ γ(1− p) + θp.

Hence, we have

E(Uk+1) ≤ [γ(1− p) + θp]E (Uk) ,

which implies (3.19) and concludes our proof.

Remark 3.5. Theorem 3.1 holds trivially if S(f) = ∅, because gap( · ,S(f)) = ∞ in this case.
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3.5 Non-convergence analysis via a Chernoff bound

In the preceding subsection, we establish the non-convergence results under the requirements

that p > (γ−1)/(γ− θ) and gap(x0,S(f)) being large enough. In this subsection, we will weaken

the requirement on p to p > p∗ with

p∗ = 1− p0 =
log γ

log(θ−1γ)
, (3.20)

where p0 is defined in the convergence theorem (Theorem 2.1), and we will relax the requirement

on x0. Moreover, our non-convergence results will not only hold for the stationarity measure

gap( · ,S(f)), but also extend to any lower semicontinuous function.

3.5.1 Lemmas and key observations

We first present a few propositions regarding the 0-1 process {Yk} defined by (3.5) and its

associated sequences {Uk}, {Y k}, and {Ek} defined by (3.6)–(3.8). We emphasize that these

propositions are purely consequences of condition (3.17) and independent of the algorithm.

Lemma 3.3 establishes a Chernoff-type bound for {Yk}, which is essentially a generalization

of [17, Lemma 4.5]. Lemma 3.4 shows that condition (3.17) is preserved under conditioning

on Ek0 with any given integer k0 ≥ 0, as long as we shift the indices of {Yk} and {Fk} by k0.

Both lemmas are proved in Appendix B since the arguments are straightforward.

Lemma 3.3. If 0 < q < p ≤ 1, then condition (3.17) implies that

P
(
1− Y k ≤ q | Ek0

)
≤ exp

[
−(p− q)2

2p
(k + k0)

]
for all k ≥ 0 and k0 ≥ 0. (3.21)

Remark 3.6. Noting the definition (3.8) of Ek, we can derive from condition (3.17) and the

tower property of conditional expectations that

P(Ek) ≥ pk for all k ≥ 0.

Therefore, the conditional probability in Lemma 3.3 is well defined for any p > 0.

Lemma 3.4. Suppose that p > 0. Given an integer k0 ≥ 0, define Ỹk = Yk0+k and F̃k = Fk0+k

for each k, and denote the probability measure P( · | Ek0) by P̃. Then condition (3.17) implies that

P̃(Ỹk = 0 | F̃k−1) ≥ p for each k ≥ 0. (3.22)

Proposition 3.3 is a key observation on the series
∑∞

k=k0
Uk, where k0 ≥ 0 is an integer. It

shows that condition (3.17) with p > p∗ renders a lower bound for the cumulative distribution

function of
∑∞

k=k0
Uk conditioned on Ek0 . More importantly, this lower bound is a positive-valued

function independent of k0 after a suitable scaling.
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Proposition 3.3. If p > p∗, then condition (3.17) implies that there exists a function Υ satisfying

P

 ∞∑
k=k0

Uk <
θk0ζ

1− θ

∣∣∣∣ Ek0

 ≥ Υ(ζ) > 0 (3.23)

for all ζ > 1 and k0 ≥ 0. Here, the function Υ is determined by p, θ, and γ.

Proof. Our proof has two steps. First, identify a function Υ fulfilling (3.23) for ζ > 1 and k0 = 0;

second, prove that Υ still works when we relax k0 to all nonnegative integers.

Step 1. Since E0 = Ω as mentioned in (3.9), this step is to find a positive value Υ(ζ) for an

arbitrarily given ζ > 1 so that

P(F ) ≥ Υ(ζ) with F =

{ ∞∑
k=0

Uk <
ζ

1− θ

}
. (3.24)

To this end, we consider the event Em defined in (3.8) and note that

P(F ) ≥ P(F ∩ Em) = P(F | Em)P(Em) (3.25)

for each m ≥ 0. In the sequel, we will bound P(F | Em) and P(Em) from below, and select an m

in order that (3.25) yields a desired lower bound for P(F ).

Due to the definition of F in (3.24) and the fact that Em =
⋂m−1

k=0 {Uk = θk} mentioned

in (3.10), it holds that

P(F | Em) = P

(
m−1∑
k=0

θk +
∞∑

k=m

Uk <
ζ

1− θ

∣∣∣∣ Em

)
≥ P

( ∞∑
k=m

Uk <
ζ − 1

1− θ

∣∣∣∣ Em

)
, (3.26)

motivating us to bound
∑∞

k=m Uk from above. To do this, we define q = (p+ p∗)/2 and note that{ ∞∑
k=m

Uk <
∞∑

k=m

(
γ1−qθq

)k} ⊇
∞⋂

k=m

{
U

1/k
k < γ1−qθq

}
=

∞⋂
k=m

{
1− Y k > q

}
, (3.27)

where the equality is because U
1/k
k = γY kθ1−Y k by definitions (3.6)–(3.7) of Uk and Y k. Thus,

P

( ∞∑
k=m

Uk <
∞∑

k=m

(
γ1−qθq

)k ∣∣∣∣ Em

)
≥ 1− P

( ∞⋃
k=m

{1− Y k ≤ q}
∣∣∣∣ Em

)

≥ 1−
∞∑

k=m

exp

[
−(p− q)2

2p
(k +m)

]
,

(3.28)

which invokes Lemma 3.3 in the last step. Let m be the smallest nonnegative integer satisfying

∞∑
k=m

(
γ1−qθq

)k ≤ ζ − 1

1− θ
and

∞∑
k=m

exp

[
−(p− q)2

2p
(k +m)

]
≤ 1

2
. (3.29)
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Such an m exists because γ1−qθq < 1 and (p− q)2/(2p) > 0 (observe that γ1−p∗θp∗ = 1 and recall

that 0 ≤ p∗ < q < p). The first inequality in (3.29) ensures that the right-hand side of (3.26) is

no less than the left-hand side of (3.28), and the second inequality in (3.29) guarantees that the

right-hand side of (3.28) is at least 1/2. Therefore, we can join (3.26) and (3.28) to obtain

P(F | Em) ≥ 1

2
.

Meanwhile, we have P(Em) ≥ pm by Remark 3.6. Hence, inequality (3.25) implies (3.24) with

Υ(ζ) =
pm

2
.

Given p, θ, and γ, the integer m is fully determined by ζ and so is Υ(ζ), defining a function Υ

that is sufficient for the first step of the proof.

Step 2. Now, we prove that the function Υ found in the last step satisfies (3.23) for all ζ > 1

and k0 ≥ 0. Fix an arbitrary k0 ≥ 0. Define P̃, {F̃k}, and {Ỹk} as in Lemma 3.4. According to

this lemma, condition (3.17) implies condition (3.22), which has exactly the same form as (3.17),

with P̃, {Ỹk}, and {F̃k} corresponding to P, {Yk}, and {Fk}, respectively. Therefore, repeating
the proof for (3.24), we can verify that Υ fulfills

P̃(F̃ ) ≥ Υ(ζ) with F̃ =

{ ∞∑
k=0

Ũk <
ζ

1− θ

}
(3.30)

for all ζ > 1, where Ũk =
∏k−1

ℓ=0 γ
Ỹℓθ1−Ỹℓ for each k ≥ 0. We will show that (3.30) ensures (3.23).

The definitions of {Ỹk}, {Uk}, and Ek0 (see Lemma 3.4, (3.6), and (3.8), respectively) imply that

Ũk =

k0+k−1∏
k=k0

γYℓθ1−Yℓ = U−1
k0

Uk0+k = θ−k0Uk0+k (3.31)

when Ek0 occurs. Recalling that P̃(·) = P( · | Ek0) and plugging (3.31) into (3.30), we have

Υ(ζ) ≤ P(F̃ | Ek0) = P

( ∞∑
k=0

θ−k0Uk0+k <
ζ

1− θ

∣∣∣∣ Ek0

)
= P

 ∞∑
k=k0

Uk <
θk0ζ

1− θ

∣∣∣∣ Ek0


for all ζ > 1, which matches (3.23) as desired. This finishes our proof.

Remark 3.7. Given an integer k0 ≥ 0, condition (3.17) with p > p∗ indeed ensures the following

equivalence:

P

 ∞∑
k=k0

Uk <
θk0ζ

1− θ

∣∣∣∣ Ek0

 > 0 ⇐⇒ ζ > 1.

The implication from right to left is due to Proposition 3.3, while the reverse implication holds

because
∑∞

k=k0
Uk ≥

∑∞
k=k0

θk = θk0/(1− θ).
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Proposition 3.3 leads to Proposition 3.4, a crucial observation on the cumulative distribution

function of
∑∞

k=0 YkUk. When {Yk} fulfills condition (3.17) with p > p∗, this distribution function

turns out to be positive everywhere on (0,∞), and its tail at 0+ decays no faster than a power

function with exponent log p/ log θ. This observation will help us establish the non-convergence

result in Theorem 3.2 and derive a lower bound for the probability of non-convergence in

Theorem 3.3.

Proposition 3.4. For ζ > 0, define

Φ(ζ) = P

( ∞∑
k=0

YkUk < ζ

)
. (3.32)

If p > p∗, then condition (3.17) implies that there exists a constant C > 0 such that

Φ(ζ) ≥ C ζ
log p
log θ for ζ ∈ (0, 1). (3.33)

Proof. Given a ζ ∈ (0, 1), define

m =

⌈
log[ζ(1− θ)/2]

log θ

⌉
. (3.34)

Then m ≥ 0. Recalling that Em =
⋂m−1

k=0 {Yk = 0} as defined in (3.8), we have{ ∞∑
k=0

YkUk < ζ

}
⊇

{ ∞∑
k=m

YkUk < ζ

}
∩ Em ⊇

{ ∞∑
k=m

Uk <
2θm

1− θ

}
∩ Em, (3.35)

where the last inclusion uses the inequality Yk ≤ 1 and the fact that 2θm/(1 − θ) ≤ ζ by the

definition (3.34) of m. Combining (3.35) with the definition of Φ in (3.32), we obtain

Φ(ζ) ≥ P

( ∞∑
k=m

Uk <
2θm

1− θ

∣∣∣∣ Em

)
P(Em) ≥ Υ(2)pm,

where Υ(2) in the last step comes from Proposition 3.3 and pm comes from Remark 3.6. Therefore,

log
[
Φ(ζ)ζ

− log p
log θ

]
≥ log[Υ(2)] +m log p−

(
log p

log θ

)
log ζ = log[Υ(2)] +

(
m− log ζ

log θ

)
log p.

Plugging the definition (3.34) of m into this inequality, we obtain by direct calculation that

log
[
Φ(ζ)ζ

− log p
log θ

]
≥ log[Υ(2)] +

(
log[(1− θ)/2]

log θ
− 1

)
log p,

which implies (3.33), with C being the exponential of its right-hand side.
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3.5.2 Qualitative and quantitative non-convergence results

This subsection presents our main results on the non-convergence of Algorithm 2.2. Under a

probabilistic ascent assumption on the polling direction sets, we characterize the non-convergence

the algorithm qualitatively in Theorem 3.2 and quantitatively in Theorem 3.3, the latter providing

a lower bound for the probability of non-convergence. Moreover, we show the tightness of our

probabilistic ascent assumption by Example 3.2.

It is worth mentioning that we will use a lower semicontinuous function µ to measure the

distance of a given point to optimality, with a point x ∈ Rn being optimal if and only if µ(x) = 0.

Examples of such an optimality measure include f(·)− inf f , gap( · , S(f)), and ∥∇f(·)∥.
Theorem 3.2 is our qualitative non-convergence result, stating that Algorithm 2.1 stays away

from the optimal set with positive probability under a probabilistic ascent assumption, provided

that the algorithm is initialized at a non-optimal point.

Theorem 3.2. Consider Algorithm 2.2 with f being differentiable and convex on Rn. Suppose

that {Dk} is a sequence of p-probabilistic ascent sets with p > p∗. Then we have

P
(
inf
k≥0

µ(Xk) > 0

)
> 0 (3.36)

for any function µ : Rn → (−∞,∞] that is lower semicontinuous, provided that µ(x0) > 0. In

particular, the conclusion holds if µ is f(·)− inf f , gap( · , S(f)), or ∥∇f(·)∥.

Proof. Take a positive constant ε < µ(x0). By the lower semicontinuity of µ, there exists a δ > 0

such that {x : µ(x) > ε} ⊇ B(x0, δ). Hence,{
inf
k≥0

µ(Xk) > 0

}
⊇
{
{Xk} ⊆ {x : µ(x) > ε}

}
⊇
{
{Xk} ⊆ B(x0, δ)

}
. (3.37)

Meanwhile, Lemma 3.1 implies that{
{Xk} ⊆ B(x0, δ)

}
⊇

{
sup
k≥0

∥Xk − x0∥ < δ

}
⊇

{ ∞∑
k=0

YkUk < δ/α0

}
. (3.38)

The last event in (3.38) has a positive probability by Proposition 3.4, because {Yk} satisfies

condition (3.17) according to Lemma 3.2. Therefore, (3.37) and (3.38) yield (3.36).

Remark 3.8. Theorem 3.2 is stronger than Theorem 3.1 in three aspects. First, Theorem 3.2 has

a weaker requirement on p since p∗ = log(γ)/ log(θ−1γ) < (γ− 1)/(γ− θ). Second, the optimality

measure in Theorem 3.2 can be any lower semicontinuous function µ, while the one in Theorem 3.1

can only be gap( · , S(f)). Third, even when µ(x) = gap(x,S(f)), the condition µ(x0) > 0 in

Theorem 3.2 is weaker than gap(x0,S(f)) > α0/[1− γ + p(γ − θ)] in Theorem 3.1.

Theorem 3.3 is our quantitative non-convergence result, which estimates the probability that

the optimality measure in Theorem 3.2 remains close to its initial value. This provides a lower

bound for the non-convergence probability of Algorithm 2.2 if its initial point is non-optimal.
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Theorem 3.3. Under the settings of Theorem 3.2, if we assume further that µ is locally Lipschitz

continuous at x0, then there exist constants C > 0 and ζ > 0 such that the function

Ψ(ζ) = P
(
inf
k≥0

µ(Xk) ≥ (1− ζ)µ(x0)

)
(3.39)

satisfies

Ψ(ζ) ≥ C ζ
log p
log θ for ζ ∈ (0, ζ). (3.40)

Proof. By assumption, there exist constants L > 0 and δ > 0 such that

|µ(x)− µ(x0)| ≤ L∥x− x0∥ for all x ∈ B(x0, δ). (3.41)

For all ζ ∈ (0, Lδ), combining (3.41) with Lemma 3.1 renders{
inf
k≥0

µ(Xk) ≥ µ(x0)− ζ

}
⊇
{
{Xk} ⊆ B(x0, ζ/L)

}
⊇

{ ∞∑
k=0

YkUk < ζ/(Lα0)

}
.

Consequently, the definition of Φ in (3.32) and that of Ψ in (3.39) yield

Ψ(ζ) ≥ Φ(ζ/(Lα0)).

Thus, Proposition 3.4 implies the desired lower bound for Ψ(ζ).

Recall Corollary 2.1, which states that Algorithm 2.2 will converge with probability 1

if m > log2(1− log θ/log γ). The following corollary shows the non-convergence side.

Corollary 3.1. Consider Algorithm 2.2 with f being differentiable and convex on Rn. Let {Dk}
be mutually independent, and each Dk be a set of m ≥ 1 independent random vectors uniformly

distributed on the unit sphere in Rn. If γ = 1 or

m < log2

(
1− log θ

log γ

)
, (3.42)

then (3.36) holds for any function µ : Rn → (−∞,∞] that is lower semicontinuous with µ(x0) > 0.

If we further assume that µ is locally Lipschitz continuous at x0, then there exist constants C > 0

and ζ > 0 such that (3.40) holds with p = 2−m.

Proof. Proposition 3.1 ensures that {Dk} is a sequence of p-probabilistic ascent sets with p = 2−m.

According to Theorems 3.2 and 3.3, it suffices to show that 2−m > p∗, which is guaranteed by

the definition of p∗ in (3.20) if γ = 1 or m satisfies (3.42).

Remark 3.9. Comparing Corollaries 2.1 and 3.1, we observe that their requirements on the

algorithmic parameters θ, γ, and m are nearly the complements of each other. The only gap is the

marginal case with m = log2(1− log θ/ log γ), which is not a concern unless log2(1− log θ/ log γ)

is an integer.
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Note that Theorem 3.2 requires {Dk} to be a sequence of p-probabilistic ascent sets with p > p∗.

We use Example 3.2 to show that such a requirement cannot be relaxed to p ≥ p∗. In this

example, {Dk} is a sequence of p-probabilistic ascent sets with p = p∗, but Algorithm 2.2

converges with probability 1. Note that this example defines {Dk} using gradient information,

even though practical implementations of Algorithm 2.2 are supposed to be derivative-free.

Example 3.2. Consider Algorithm 2.2 with f being continuously differentiable and bounded

below on Rn, and ∇f being Lipschitz continuous on Rn. For each k ≥ 0, define

dk =

Gk/∥Gk∥, if Gk ̸= 0,

d, otherwise,

where d is a fixed unit vector (e.g., any coordinate vector). Then we set Dk = {ξkdk}, where ξk is

a random variable that is independent of Fk−1 and equals 1 and −1 with probability p∗ and 1−p∗,

respectively. Note that

P
(
min
d∈Dk

dTGk ≥ 0
∣∣ Fk−1

)
= P

(
ξkd

T
kGk ≥ 0 | Fk−1

)
≥ P(ξk = 1 | Fk−1) = p∗.

Hence, {Dk} is a sequence of p∗-probabilistic ascent sets according to Proposition 3.2. Meanwhile,

one can check that {Dk} is a sequence of p0-probabilistic 1-descent sets (note that p0 = 1− p∗),

implying that P (lim infk ∥Gk∥ = 0) = 1 according to [17] (see also Theorem 2.1).

Remark 3.10. Consider Algorithm 2.2 with γ = θ−1, which renders p∗ = 1/2. Then Example 3.1

is indeed a one-dimensional special case of Example 3.2.

3.5.3 Numerical verification of the quantitative non-convergence result

In this subsection, we demonstrate the quantitative non-convergence result in Theorem 3.3

numerically. As an example, we will focus on the case with µ(x) = f(x)− inf f , which reduces

the function Ψ defined in (3.39) to

Ψ(ζ) = P
(
inf
k≥0

f(Xk) ≥ f(x0)− ζ

)
.

Theorem 3.3 shows that the tail of Ψ at 0+ decays at a rate no faster than ζ log p/log θ. Geometrically

speaking, if we plot Ψ(ζ) against ζ on a log-log scale, the slope of the curve at 0+ should be no

more than log p/log θ, which will be illustrated numerically by the following experiment.

The experiment is set up in the same way as in Subsection 3.1 except for the algorithmic

parameters θ, γ, and m. To ensure the representativeness of the results, we randomly sample

five values of the triple (θ, γ,m) as follows.

(a) Sample p∗ and θ uniformly from the intervals (0, 0.45) and (0.25, 0.75), respectively.

(b) Set γ = θp∗/(p∗−1) and m = ⌊− log2 p∗ − eps⌋, where eps is the machine epsilon.
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This sampling scheme ensures that inequality (3.42) holds. Hence, Φ satisfies inequality (3.40)

in Theorem 3.3 (see Corollary 3.1).

Given a sample of (θ, γ,m), we perform N = 107 independent runs of Algorithm 2.2, each

of which is terminated when the step size drops below the machine epsilon or the number of

function evaluations reaches 103. The best (lowest) function value found in each run is denoted

by fbest. Then we define

Ψ̂(ζ) =
1

N
·
(
number of runs with fbest ≥ f(x0)− ζ

)
,

which is our estimation of Ψ(ζ).

Figure 2 plots log10[Ψ̂(ζ)]/(log p/ log θ) against log10 ζ, with ζ varying between 10−3 and 10−1.

Each curve corresponds to a sample of (θ, γ,m). Since we are concerned with the slopes rather

than the intercepts, the curves are vertically shifted by small constants to separate them visually.

As a reference, the figure includes a black dashed line with slope 1.

Across all the samples, the curves are almost parallel to the reference line, which is consistent

with the rate in Theorem 3.3. Indeed, the almost perfect parallelism motivates us to conjecture

that the rate in the theorem is tight, which is an interesting topic for future research.
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Figure 2: Curves of log10[Ψ̂(ζ)]/(log p/ log θ) versus log10 ζ for five random samples of (θ, γ,m).

The curves are vertically shifted for clarity. The dashed line is a reference line with slope 1.
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3.6 Non-convergence under a weaker assumption

Example 3.2 shows that we cannot weaken our assumption in Theorem 3.2 by replacing p > p∗

with p ≥ p∗. However, this subsection will show that it is indeed possible to relax the definition

of probabilistic ascent to obtain a weaker assumption that renders a weaker non-convergence

result compared with Theorem 3.2.

Consider Algorithm 2.2 with f being differentiable and convex on Rn. In place of probabilistic

ascent, this subsection assumes that {Dk} satisfies

P
(
lim inf
k→∞

{P (cm (Dk,−Gk) ≤ 0 | Fk−1) ≥ p1(Gk ̸= 0)}
)

> 0. (3.43)

According to Proposition 3.2, condition (3.43) holds if and only if the sequence {Yk} defined

in (3.5) satisfies

P
(
lim inf
k→∞

{P (Yk = 0 | Fk−1) ≥ p}
)

> 0. (3.44)

Remark 3.11. Condition (3.44) means that the event

{P(Yk = 0 | Fk−1) ≥ p for all sufficiently large k} (3.45)

occurs with positive probability. This is weaker than

P

( ∞⋂
k=0

{P (Yk = 0 | Fk−1) ≥ p}

)
> 0, (3.46)

which means that the event {P(Yk = 0 | Fk−1) ≥ p for each k} has a positive probability. Condi-

tion (3.44) is also weaker than

∞∑
k=0

P ({P (Yk = 0 | Fk−1) < p}) < ∞, (3.47)

since (3.47) implies that the event (3.45) occurs a.s. by the Borel–Cantelli Lemma [16, Theo-

rem 2.3.1].

Remark 3.12. As stated in Lemma 3.2, {Dk} is a sequence of p-probabilistic ascent sets if and

only if the sequence {Yk} satisfies

P (Yk = 0 | Fk−1) ≥ p for each k ≥ 0, (3.48)

which is stronger than condition (3.44). Therefore, condition (3.43) can be regarded as a relaxation

of p-probabilistic ascent defined in Definition 3.1. In addition, condition (3.48) implies both (3.46)

and (3.47), either of which in turn implies (3.44) as discussed in Remark 3.11.

Before we show the non-convergence result under assumption (3.43), we need to introduce

Lemma 3.6, which will be proved based on Lemma 3.5, a strong law of large numbers for

martingales.
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Lemma 3.5 ([10]). Let {Wk} be a martingale. If there exists an α ≥ 1 such that

∞∑
k=1

E
(
|Wk −Wk−1|2α

)
/k1+α < ∞,

then we have Wk/k → 0 a.s. In particular, Wk/k → 0 a.s. if {Wk} has bounded increments.

Lemma 3.6. If p > p∗, then condition (3.44) implies that

P

( ∞∑
k=0

Uk < ∞

)
> 0. (3.49)

Proof. By the root test, the series
∑∞

k=0 Uk converges if lim supk U
1/k
k < 1. Recalling the

definitions of Uk in (3.6) and Y k in (3.7), we have

log
(
U

1/k
k

)
= log

(
γY kθ1−Y k

)
= log θ + Y k log(θ

−1γ) = [(p∗ − 1) + Y k] log(θ
−1γ), (3.50)

where the last step uses the fact that p∗ = (log γ)/ log(θ−1γ). Since log(θ−1γ) > 0, equality (3.50)

indicates that {
lim sup
k→∞

Y k < 1− p∗

}
⊆

{ ∞∑
k=0

Uk < ∞

}
.

Therefore, by our assumption that p > p∗, inequality (3.49) can be established by proving

P
(
lim sup
k→∞

Y k ≤ 1− p

)
> 0. (3.51)

To this end, let us define

Pk = P (Yk = 0 | Fk−1) for each k ≥ 0.

Then E(Yk+Pk−1 | Fk−1) = 0 for each k ≥ 0, implying that
{∑k−1

ℓ=0 (Yℓ+Pℓ−1)
}
is a martingale

with respect to {Fk}. In addition, this martingale has bounded increments. Thus, Lemma 3.5

leads to

lim
k→∞

(
Y k + P k − 1

)
= 0 a.s.,

where we define P k = k−1
∑k−1

ℓ=0 Pℓ. Hence, we have

lim sup
k→∞

Y k = 1− lim inf
k→∞

P k a.s.

Consequently,

P
(
lim sup
k→∞

Y k ≤ 1− p

)
= P

(
lim inf
k→∞

P k ≥ p

)
≥ P

(
lim inf
k→∞

Pk ≥ p

)
≥ P

(
lim inf
k→∞

{Pk ≥ p}
)
.

(3.52)
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The two inequalities in (3.52) can be verified by noticing that

lim inf
k→∞

P k ≥ lim inf
k→∞

Pk and

{
lim inf
k→∞

Pk ≥ p

}
⊇ lim inf

k→∞
{Pk ≥ p} .

Finally, the last probability in (3.52) is positive by condition (3.44). The proof is complete.

Remark 3.13. In comparison with Lemma 3.6, condition (3.17) with p > p∗ implies

P

( ∞∑
k=0

Uk < ∞

)
= 1. (3.53)

The proof is similar to that of Lemma 3.6. The major difference is that (3.17) directly leads to

P
(
lim inf
k→∞

{Pk ≥ p}
)

= 1. (3.54)

Combining (3.54) and (3.52), we see that the probability in (3.51) equals 1, implying (3.53).

Now, we are ready to present the non-convergence result under the weaker assumption (3.43).

Its proof is similar to that of Theorem 3.2 with the help of Lemma 3.6.

Theorem 3.4. Consider Algorithm 2.2 with f being differentiable and convex on Rn. If {Dk} sat-

isfies (3.43) with p > p∗, then there exists a positive constant ζ such that

P (gap({Xk},S(f)) > 0) > 0

provided that gap(x0,S(f)) > ζ.

Proof. By Lemma 3.6, there exists a positive constant ζ such that

P

( ∞∑
k=0

Uk <
ζ

α0

)
> 0.

Then we have

P ({Xk} ⊆ B(x0, ζ)) ≥ P

(
sup
k≥0

∥Xk − x0∥ < ζ

)
≥ P

( ∞∑
k=0

Uk <
ζ

α0

)
> 0,

where the second inequality uses Lemma 3.1. Therefore, when gap(x0,S(f)) > ζ, we have

P (gap({Xk},S(f)) > 0) ≥ P ({Xk} ⊆ B(x0, ζ)) > 0.
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4 Extension to the nonsmooth case

In this section, we extend our non-convergence results to the nonsmooth case, assuming

that f : Rn → R is only convex but not necessarily differentiable. We will show that the

non-convergence results in Theorems 3.1–3.3 still hold if we generalize Definition 3.1 of proba-

bilistic ascent to Definition 4.1 as follows. Theorem 3.4 can be similarly extended.

Definition 4.1. Consider Algorithm 2.2 with f being locally Lipschitz continuous on Rn. The

sequence {Dk} is said to be a sequence of p-probabilistic ascent sets if it satisfies

P
(
min
d∈Dk

f◦(Xk; d) ≥ 0
∣∣ Fk−1

)
≥ p1(0 /∈ ∂Cf(Xk)) for each k ≥ 0, (4.1)

where f◦( · ; d) is the generalized directional derivative of f along the direction d, and ∂Cf(·) is
the Clarke subdifferential of f (see [11, Definitions 1.1 and 1.3] and [12, Section 2.1]).

Remark 4.1. Condition (4.1) reduces to (3.1) when f is continuously differentiable on Rn, since

in that case we have f◦(Xk; d) = dTGk and ∂Cf(Xk) = {Gk} (see [11, Proposition 1.13]).

For later usage, Proposition 4.1 verifies the measurability of two random variables, which

correspond to 1(Gk ̸= 0) and 1(mind∈Dk
dTGk < 0) in the smooth case.

Proposition 4.1. Consider Algorithm 2.2 with f being locally Lipschitz continuous on Rn. Then

we have the following for each k ≥ 0.

(a) 1(0 /∈ ∂Cf(Xk)) is Fk−1-measurable.

(b) 1(mind∈Dk
f◦(Xk; d) < 0) is Fk-measurable.

Proof. Item (a) holds because {x ∈ Rn : 0 /∈ ∂Cf(x)} is open by [12, Proposition 2.1.5]. For

item (b), it suffices to note that 1(f◦(Xk; d) < 0) is Fk-measurable for each d ∈ Dk, which is true

since (x, d) 7→ f◦(x; d) is upper semicontinuous [12, Proposition 2.1.1 (b)] and hence Borel.

Proposition 4.2 generalizes Proposition 3.1, namely the probabilistic ascent of the se-

quence {Dk} specified in Corollary 2.1. The proof is given in Appendix B.

Proposition 4.2. With probabilistic ascent defined in Definition 4.1, Proposition 3.1 still holds

even if we remove the differentiability assumption about f .

To generalize Lemma 3.2, namely the equivalence between probabilistic ascent and condi-

tion (3.17), we shift the definition of Yk from (3.5) to

Yk = 1

(
min
d∈Dk

f◦(Xk; d) < 0

)
. (4.2)

Lemma 4.1. With probabilistic ascent defined in Definition 4.1 and Yk defined in (4.2),

Lemma 3.2 still holds when f is locally Lipschitz continuous rather than continuously differentiable.
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Proof. We only need to prove the equivalence between (4.1) and

P
(
min
d∈Dk

f◦(Xk; d) ≥ 0
∣∣ Fk−1

)
≥ p for each k ≥ 0. (4.3)

Recalling that f◦(Xk; d) = max{gTd : g ∈ ∂Cf(Xk)} [11, Proposition 1.4], we have

{0 ∈ ∂Cf(Xk)} ⊆
{
min
d∈Dk

f◦(Xk; d) ≥ 0
}
.

Therefore, conditions (4.1) and (4.3) are equivalent according to Lemma A.2.

Remark 4.2. Since conditions (4.1) and (4.3) are equivalent, Definition 4.1 can be stated

without the indicator function 1(0 /∈ ∂Cf(Xk)). However, we prefer the current form because it is

consistent with Definition 3.1, where the 1(Gk ̸= 0) term is necessary according to Remark 3.1.

Now, we can extend Theorems 3.2 and 3.3 to the nonsmooth case.

Theorem 4.1. With probabilistic ascent defined in Definition 4.1, Theorems 3.2 and 3.3 still hold

even if we remove the differentiability assumption about f and replace ∥∇f(·)∥ with gap(0, ∂Cf(·)).

Proof. We only need to verify that Lemmas 3.1–3.4 and Propositions 3.3 and 3.4 still hold

under the new settings. Lemma 3.1 remains true as it does not rely on the differentiability

of f . Lemma 3.2 holds according to Lemma 4.1. Lemmas 3.3 and 3.4, Propositions 3.3 and 3.4

are valid because they only depend on Lemma 3.2 and the Fk-measurability of Yk, which is

guaranteed by item (b) of Proposition 4.1. The proof is complete.

Remark 4.3. For Theorem 4.1, we can take the lower semicontinuous function µ in (3.36) to

be f(·)− inf f , gap( · ,S(f)), and gap(0, ∂Cf(·)). It is clear that f(·)− inf f and gap( · ,S(f)) are
lower semicontinuous. The lower semicontinuity of gap(0, ∂Cf(·)) is also basic, but we provide a

proof in Lemma A.5 for completeness.

Theorem 3.1 also holds in the nonsmooth case since it is a weaker version of Theorem 3.2.

We can also extend Theorem 3.4 to the nonsmooth case. Specifically, Theorem 3.4 holds without

the differentiability assumption about f as long as we replace condition (3.43) with

P
(
lim inf
k→∞

{
P
(
min
d∈Dk

f◦(Xk; d) ≥ 0
∣∣ Fk−1

)
≥ p1 (0 /∈ ∂Cf(Xk))

})
> 0. (4.4)

Similar to Lemma 4.1, condition (4.4) is equivalent to (3.44) with {Yk} defined by (4.2). This

leads to Lemma 3.6 and then Theorem 3.4.

Hence, we can conclude that our non-convergence theory for probabilistic direct search is still

valid in the nonsmooth case. Indeed, it is also possible to extend the convergence theory in [17]

to the nonsmooth case similarly, but it is beyond the scope of this paper.
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5 Conclusion

We establish the non-convergence theory for probabilistic direct search. The proof technique is

mainly based on the analysis of the probability that the series of step sizes converges. Specifically,

the series of step sizes in Algorithm 2.2 converges with positive probability if the sequence

of polling direction sets is a sequence of p-probabilistic ascent sets with p > log γ/ log(θ−1γ),

where θ and γ are shrinking and expanding factors of the step size, respectively. More importantly,

in the typical case where we choose uniform distribution on the unit sphere in Rn as the

distribution of polling directions, the series of step sizes converges with probability 1 if the

number of polling directions in each iteration is strictly less than log2(1− log θ/ log γ), which is

almost the counterpart of the convergence result. A weaker assumption is proposed to replace

the probabilistic ascent assumption while the nonzero probability of the convergence of the

series of step sizes is still guaranteed. The final part demonstrates the tightness of our non-

convergence analysis by explaining the reason why our analysis techniques cannot cover the case

of p-probabilistic ascent with p = p∗ instead of p > p∗ and providing a concrete example showing

that probabilistic direct search converges when {Dk} is a sequence of p∗-probabilistic ascent sets.

Finally, we extend our results to the nonsmooth case.
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A Basic lemmas

Lemma A.1 is a straightforward consequence of [16, Theorem 4.1.14].

Lemma A.1. If E and F are events, and G is a σ-algebra with F ∈ G, then P(EF | G) = P(E | G)1(F ).

Lemma A.2 elaborates on the equivalence among several probability inequalities. It is useful for

interpreting the conditions in Definition 3.1 and 4.1.

Lemma A.2. Let p ∈ [0, 1] be a constant, E and F be events, and G be a σ-algebra with E ∈ G. Then

the following three inequalities are equivalent to each other:

P(F | G) ≥ p1(Ec), P(F ∩ Ec | G) ≥ p1(Ec), P(E ∪ F | G) ≥ p.

In particular, if E ⊆ F , then they are all equivalent to P(F | G) ≥ p.

Proof. We refer to the three inequalities as (a), (b), and (c), in left-to-right order.

(a) ⇒ (b): Since Ec ∈ G, Lemma A.1 yields P(F ∩ Ec | G) = P(F | G)1(Ec) ≥ p1(Ec).

(b) ⇒ (c): Since E ∪ F = E ∪ (F ∩ Ec) and E ∈ G, we have

P(E ∪ F | G) = P(E | G) + P(F ∩ Ec | G) = 1(E) + P(F ∩ Ec | G) ≥ 1(E) + p1(Ec) ≥ p.
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(c) ⇒ (a): Since (E ∪ F ) ∩ Ec = F ∩ Ec and Ec ∈ G, Lemma A.1 leads to

P(F | G) ≥ P((E ∪ F ) ∩ Ec | G) = P(E ∪ F | G)1(Ec) ≥ p1(Ec).

(c) reduces to P(F | G) ≥ p when E ⊆ F .

Lemma A.3 presents a basic connection between the conditional probability with respect to a σ-algebra

and that with respect to an event.

Lemma A.3. Let E be an event and G be a σ-algebra. Then P (E | G) ≥ p if and only if P (E | F ) ≥ p

for all F ∈ G with P(F ) > 0.

Proof. For all F ∈ G with P(F ) > 0, the law of total probability and Lemma A.1 yield

P(E | F ) =
E
(
P(EF | G)

)
P(F )

=
E
(
P(E | G)1(F )

)
P(F )

. (A.1)

If P(E | G) ≥ p a.s., then (A.1) yields P(E | F ) ≥ p. If P(E | F ) ≥ p for all F ∈ G with P(F ) > 0, then

the event F̂ = {P(E | G) < p} ∈ G must have probability zero, or else (A.1) implies P(E | F̂ ) < p.

In the following, for an event F with P(F ) > 0, we let PF be the probability measure defined

by PF (E) = P(E | F ) for any event E, and PF ( · | G) be the corresponding conditional probability with

respect to a σ-algebra G. Moreover, we use EF to denote the expectation under PF , and EF ( · | G) to
denote the corresponding conditional expectation with respect to a σ-algebra G. It is well known that

E(X1(F )) = EF (X)P(F ) (A.2)

for any random variable X (see, e.g., [20, Section 8.1]). Consequently,

E(X1(F )) = E (EF (X | G)1(F )) , (A.3)

which can be obtained by multiplying both sides of the equality EF (X) = EF (EF (X | G)) with P(F ).

Lemma A.4. Let X be a random variable, F be an event with P(F ) > 0, and G be a σ-algebra.

(a) It holds that E(X1(F ) | G) = EF (X | G)P(F | G).

(b) For any p ∈ [0, 1], we have the following equivalence:

E(X1(F ) | G) ≥ pP(F | G) (P-a.s.) ⇐⇒ EF (X | G) ≥ p (PF -a.s.).

Proof. (a) Since EF (X | G)P(F | G) is G-measurable, the definition of conditional expectation tells us

that we only need to verify

E(EF (X | G)P(F | G)1(E)) = E(X1(F )1(E)) (A.4)

for all E ∈ G. Denote Y = EF (X | G)1(E). Then the left-hand side of (A.4) equals

E(Y P(F | G)) = E(Y E(1(F ) | G)) = E(E(Y 1(F ) | G)) = E(Y 1(F )).

To calculate E(Y 1(F )), we first note that Y = EF (X1(E) | G) and then apply (A.3) to the random

variable X1(E), obtaining

E(Y 1(F )) = E (EF (X1(E) | G)1(F )) = E ([X1(E)]1(F )) .
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Therefore, equality (A.4) holds.

(b) Denote Z = EF (X | G). According to (a), we only need to prove the equivalence

ZP(F | G) ≥ pP(F | G) (P-a.s.) ⇐⇒ Z ≥ p (PF -a.s.). (A.5)

To this end, defining a nonnegative random variable W = 1(Z < p)P(F | G), we observe that{
ZP(F | G) ≥ pP(F | G)

}
=
{
Z ≥ p or P(F | G) = 0} =

{
W = 0} (A.6)

and that

PF (Z < p)P(F ) = P ({Z < p} ∩ F ) = E
(
1(Z < p)P(F | G)

)
= E(W ). (A.7)

Therefore, we have the following two equivalences:

ZP(F | G) ≥ pP(F | G) (P-a.s.) ⇐⇒ W = 0 (P-a.s.) ⇐⇒ PF (Z < p) = 0,

where the first one is due to (A.6), while the second comes from (A.7) and the fact that P(F ) > 0.

Hence, (A.5) holds. The proof is complete.

Remark A.1. Item (a) of Lemma A.4 is a generalization of equality (A.2). In light of (a), item (b) shows

that we can cancel out P(F | G) from both sides of the almost sure inequality E(X1(F ) | G) ≥ pP(F | G),
switching from P to PF for the almost-sureness. When X = 1(E) for an event E, item (b) reduces to

P(EF | G) ≥ pP(F | G) (P-a.s.) ⇐⇒ PF (E | G) ≥ p (PF -a.s.). (A.8)

Note that P(F | G) = 1(F ) if F ∈ G, as is the case in Remark 3.3 and the proof of Lemma 3.4.

Lemma A.5. Let f : Rn → R be convex. Then µ(x) = gap(0, ∂Cf(x)) is lower semicontinuous for x ∈ Rn.

Proof. Fix an x ∈ Rn and an ε > 0. By [34, Corollary 24.5.1], there exists a δ > 0 such that

∂Cf(y) ⊆ ∂Cf(x) + B(0, ε) for all y ∈ B(x, δ).

This implies that

gap(0, ∂Cf(y)) ≥ gap(0, ∂Cf(x))− ε for all y ∈ B(x, δ).

Hence, µ is lower semicontinuous.

B Proofs of Proposition 3.1, Lemma 3.3, Lemma 3.4, and Proposition 4.2

To prove Proposition 3.1, we need Lemma B.1 as follows, particularly its item (b).

Lemma B.1. Let X and Y be random vectors. Consider a measurable function h with E(|h(X,Y )|) < ∞,

and define H(y) = E(h(X, y)).

(a) If X is independent of Y , then E(h(X,Y )) = E(H(Y )).

(b) If X is independent of Y and a σ-algebra G, then E(h(X,Y ) | G) = E(H(Y ) | G).
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Proof. Item (a) is a generalization of [16, Theorem 2.1.12], which considers random variables rather than

random vectors. We omit its proof, which is a straightforward extension of that for [16, Theorem 2.1.12].

Now we prove item (b) based on (a). Since E(H(Y ) | G) is G-measurable, the definition of conditional

expectation tells us that we only need to verify

E(h(X,Y )1(E)) = E(E(H(Y ) | G)1(E)) (B.1)

for all E ∈ G. The right-hand side of (B.1) equals E(H(Y )1(E)) due to the fact that E ∈ G and the tower

property of conditional expectation. Hence, we only need to check

E(h(X,Y )1(E)) = E(H(Y )1(E)). (B.2)

Denote 1(E) by Z and define Ŷ = (Y,Z). Then X is independent of Ŷ by our assumption. Define

ĥ(x, ŷ) = h(x, y)z and Ĥ(ŷ) = E(ĥ(X, ŷ)),

where ŷ = (y, z), with y and z having the same dimensions as Y and Z, respectively. Then we can apply

item (a) to ĥ and Ĥ and obtain

E(ĥ(X, Ŷ )) = E(Ĥ(Ŷ )). (B.3)

In addition, by the definition of Ĥ and H, we have

Ĥ(ŷ) = E(h(X, y)z) = H(y)z. (B.4)

Plugging (B.4) and the definitions of ĥ into (B.3), we obtain E(h(X,Y )Z) = E(H(Y )Z), which is (B.2).

This completes the proof.

Remark B.1. Taking expectation on both sides of the equality in item (b) of Lemma B.1, we can recover

item (a) by the tower property of conditional expectation. We also note that item (b) is a generalization

of [16, Example 4.1.7] (see also [9, page 148]), where G = σ(Y ).

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. It suffices to prove that

P ({cm (Dk,−Gk) ≤ 0} ∩ {Gk ̸= 0} | Fk−1) ≥ 2−m
1 (Gk ̸= 0) . (B.5)

Notice that the left-hand side of (B.5) can be rewritten as

E (1(cm (Dk,−Gk) ≤ 0)1 (Gk ̸= 0) | Fk−1) . (B.6)

By item (b) of Lemma B.1, the conditional expectation (B.6) equals E (H(Gk) | Fk−1) with

H(g) = E(1(cm (Dk,−g) ≤ 0)1 (g ̸= 0)) =

2−m, if g ̸= 0,

0, if g = 0,

where the last equality holds because Dk consists of m independent random vectors uniformly distributed

on the unit sphere. We then complete the proof by observing that

E (H(Gk) | Fk−1) = E
(
2−m

1(Gk ̸= 0) | Fk−1

)
= 2−m

1 (Gk ̸= 0) ,

where the last equality is because Gk is Fk−1-measurable.
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To prove Lemma 3.3, we first present Lemma B.2.

Lemma B.2. Suppose that k > k0 ≥ 0 and 0 < q < p ≤ 1. Then

inf
t>0

t(kq − k0) + p(k − k0)(e
−t − 1) ≤ − (q − p)2

2p
(k + k0).

Proof. Considering t = log(p/q), we only need to prove

(kq − k0) log(p/q) + (k − k0)(q − p) ≤ − (q − p)2

2p
(k + k0). (B.7)

Regard the left-hand side of (B.7) as a function of q and denote it by φ(q). Then

φ(p) = 0, φ′(p) =
k0
p

− k0 ≥ 0, and φ′′(q) = −k

q
− k0

q2
.

By the Taylor expansion of φ(q) at the point p, there exists a ξ ∈ (q, p) such that

φ(q) = φ′(p)(q − p) +
1

2
φ′′(ξ)(q − p)2 ≤ − (q − p)2

2

(
k

ξ
+

k0
ξ2

)
≤ − (q − p)2

2p
(k + k0).

Now we prove Lemma 3.3 using the moment method for deriving Chernoff bounds [24].

Proof of Lemma 3.3. The inequality in (3.21) holds trivially when k = k0, because 1 − Y k = 1 > q

when Ek0
happens, implying that the conditional probability in (3.21) is zero. Let us focus on the

nontrivial case where k > k0 ≥ 0. Fixing an arbitrary t > 0, we first make two claims: one is

P
(
1− Y k ≤ q | Ek0

)
≤ et(kq−k0) E

(
k−1∏
ℓ=k0

e−t(1−Yℓ)

∣∣∣∣ Ek0

)
, (B.8)

and the other is

E

(
k−1∏
ℓ=k0

e−t(1−Yℓ)

∣∣∣∣ Ek0

)
≤ exp[p(k − k0)(e

−t − 1)]. (B.9)

Once inequalities (B.8) and (B.9) are proved, we will have

P
(
1− Y k ≤ q | Ek0

)
≤ exp[t(kq − k0) + p(k − k0)(e

−t − 1)],

and then the proof will be completed by Lemma B.2. We now prove the two claims by standard techniques.

For (B.8), by definition (3.7) of Y k, definition (3.8) of Ek0 , and Markov’s inequality, we have

P
(
1− Y k ≤ q | Ek0

)
= P

(
exp

[
− t

k−1∑
ℓ=0

(1− Yℓ)
]
≥ e−tkq

∣∣∣∣ Ek0

)

≤ etkq E

(
k−1∏
ℓ=0

e−t(1−Yℓ)

∣∣∣∣ Ek0

)
= et(kq−k0) E

(
k−1∏
ℓ=k0

e−t(1−Yℓ)

∣∣∣∣ Ek0

)
,

where the last equality is because
∏k0−1

ℓ=0 e−t(1−Yℓ) = e−tk0 when Ek0
happens.

For (B.9), we use the tower property of conditional expectation to get

E

(
k−1∏
ℓ=k0

e−t(1−Yℓ)

∣∣∣∣ Fk0−1

)
= E

(
E
(
e−t(1−Yk−1) | Fk−2

) k−2∏
ℓ=k0

e−t(1−Yℓ)

∣∣∣∣ Fk0−1

)
, (B.10)
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where
∏k−2

ℓ=k0
e−t(1−Yℓ) = 1 when k = k0 + 1. By condition (3.17), we have

E
(
e−t(1−Yk−1)

∣∣ Fk−2

)
≤ pe−t + (1− p) ≤ exp(pe−t − p), (B.11)

where the last inequality is because x+1 ≤ ex for all x. By equality (B.10) and inequality (B.11), we have

E

(
k−1∏
ℓ=k0

e−t(1−Yℓ)

∣∣∣∣ Fk0−1

)
≤ exp[p(e−t − 1)] E

(
k−2∏
ℓ=k0

e−t(1−Yℓ)

∣∣∣∣ Fk0−1

)
≤ exp[p(k − k0)(e

−t − 1)],

(B.12)

where the second inequality follows from the recursive application of the first one. Since P(Ek0) > 0 by

Remark 3.6, inequality (B.12) implies (B.9) by Lemma A.3.

Lemma 3.4 is a straightforward consequence of Lemma A.4, or, more precisely, Remark A.1.

Proof of Lemma 3.4. Since p > 0, the probability measure P( · | Ek0
) is well defined according to

Remark 3.6. Fix an integer k ≥ 0. Then Ek0
∈ Fk0−1 ⊆ Fk0+k−1 = F̃k−1 by the definitions of {Fk}

and {F̃k}. Thus, condition (3.17) and Lemma A.1 yield

P({Ỹk = 0} ∩ Ek0
| F̃k−1) = P(Yk0+k = 0 | Fk0+k−1)1(Ek0

) ≥ p1(Ek0
).

Hence, recalling that P̃ is P( · | Ek0
), we have P̃(Ỹk = 0 | F̃k−1) ≥ p according to Remark A.1.

Now we prove Proposition 4.2. It is similar to the proof of Proposition 3.1.

Proof of Proposition 4.2. First, the function h(D, x) = 1(mind∈D f◦(x; d) ≥ 0)1(0 /∈ ∂Cf(x)) is Borel

by the same argument as in the proof of Proposition 4.1. Then similar to the proof of Proposition 3.1, by

item (b) of Lemma B.1 and item (a) of Proposition 4.1, we only need to show that

H(x) = E (h(Dk, x)) ≥

2−m, if 0 /∈ ∂Cf(x),

0, if 0 ∈ ∂Cf(x).

It suffices to prove that when 0 /∈ ∂Cf(x), we have

P (f◦(x; d) ≥ 0) ≥ 1

2
,

where d is uniformly distributed on the unit sphere in Rn, which is true since {d : f◦(x; d) ≥ 0} contains a

half-space {v : gTv ≥ 0} with g being any element in ∂Cf(x).

C (Non-)Measurability of iterates with respect to polling directions

In this section, we discuss when the iterates of Algorithm 2.2 are measurable with respect to the polling

directions, and when they are not. Often omitted in literature, this type of discussion is essential for the

mathematical rigour of our analysis. Indeed, as we will see in Example C.1, the measurability can fail for

certain implementations of Algorithm 2.2. For the concept of measurability, we refer to [16, Section 1.2].

Lemma C.1 establishes the measurability of the iterates for certain implementations of Algorithm 2.2,

covering [17, Algorithm 2.1]. The proof is elementary, but it clarifies the role of the polling strategy in the

measurability.
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Lemma C.1. Let m be a positive integer and f be continuous on Rn. Consider Algorithm 2.2 with the

following configuration for each k ≥ 0.

(a) Generate Dk = {d1k, . . . , dmk } with d1k, . . . , d
m
k being random vectors.

(b) Set the order of function evaluations as f(Xk +Akd
1
k), . . . , f(Xk +Akd

m
k ) before polling.

(c) Use either opportunistic polling or complete polling.

Let FD
k = σ(D0, . . . ,Dk) for each k ≥ 0 and FD

−1 = {∅,Ω}. Then Xk is FD
k−1-measurable for each k ≥ 0.

Proof. We will prove by induction that Xk and Ak are both FD
k−1-measurable for each k ≥ 0. The base

case k = 0 holds trivially since X0 and A0 are not random. Assuming that Xk and Ak are FD
k−1-measurable,

let us prove that Xk+1 and Ak+1 are both FD
k -measurable. Before starting, note that the induction

hypothesis implies that Xk and Ak are FD
k -measurable since FD

k−1 ⊆ FD
k . Define d0k = 0 and

V i = f(Xk +Akd
i
k), i = 0, 1, . . . ,m.

Then each V i is FD
k -measurable since f is continuous. ρ(Ak) is also FD

k -measurable as ρ is monotone.

Now, we consider the case of complete polling. In this case,

Xk+1 = Xk +Ak

m∑
i=1

dikW
i, (C.1)

where W i (i = 1, . . . ,m) is the indicator defined by

W i = 1
(
i is the smallest integer such that V i = min{V 1, . . . , V m}, and V 0 − V i > ρ(Ak)

)
.

Note that at most one of W 1, . . . ,Wm is 1, and they are all 0 if the complete polling fails. Moreover,

W i =

[
i−1∏
j=1

1
(
V i < V j

) m∏
j=i+1

1
(
V i ≤ V j

) ]
1
(
V 0 − V i > ρ(Ak)

)
,

which is FD
k -measurable due to the FD

k -measurability of V 0, . . . , V m and ρ(Ak). Therefore, Xk+1 is FD
k -

measurable according to (C.1). Consequently, Ak+1 is FD
k -measurable by the recurrence relation (2.3)

and the induction hypothesis. The induction finishes for complete polling.

The case of opportunistic polling can be handled similarly. In this case, equation (C.1) holds with

W i = 1
(
i is the smallest integer such that V 0 − V i > ρ(Ak)

)
=

[
i−1∏
j=1

1
(
V 0 − V j ≤ ρ(Ak)

) ]
1
(
V 0 − V i > ρ(Ak)

)
,

which is FD
k -measurable. Everything else is the same as complete polling.

However, if the polling in Algorithm 2.2 involves randomness beyond the polling directions, then Xk

may not be FD
k−1-measurable. This is illustrated by Example C.1. For this reason, our analysis uses

Fk = σ(D0, X1, . . . ,Dk, Xk+1) rather than FD
k as the filtration.

Example C.1. Let m be a positive integer and f be continuous on Rn. Consider Algorithm 2.2 with the

following configuration for each k ≥ 0.
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(a) Generate Dk = {d1k, . . . , dmk } with d1k, . . . , d
m
k being random vectors.

(b) Pick a random permutation πk of {1, . . . ,m}.

(c) Set the order of function evaluations as f(Xk +Akd
πk(1)
k ), . . . , f(Xk +Akd

πk(m)
k ) before polling.

(d) Use opportunistic polling.

Since Xk depends on πk−1, we cannot guarantee its FD
k−1-measurability if πk−1 is not FD

k−1-measurable,

or informally, if πk−1 contains randomness beyond FD
k−1. Similar to [15, Section 4], we can define πk−1

by ranking the directions in Dk−1 according to a stochastic oracle independent of the polling directions.

Or we simply pick the sequences {πk} and {Dk} independently. In these cases, Xk can be measurable with

respect to σ(D0, π0, . . . ,Dk−1, πk−1), but not with respect to FD
k−1.

D Discussions about the definition of probabilistic descent

Comparing Definition 2.2 of probabilistic descent with Definition 3.1 of probabilistic ascent, one may ask

why the latter involves 1(Gk ̸= 0) whereas the former does not. To answer this question, we propose

an alternative definition of probabilistic descent in Definition D.1, with 1(Gk ≠ 0) playing a role like in

Definition 3.1.

Definition D.1 (Alternative definition of probabilistic descent). Identical to Definition 2.2 except that

we replace condition (2.4) with

P (cm (Dk,−Gk) ≥ κ | Fk−1) ≥ p1(Gk ̸= 0) for each k ≥ 0. (D.1)

Definition D.1 is equivalent to Definition 2.2 if cm( · , 0) ≥ κ (e.g., [17] defines cm( · , 0) = 1). Indeed,

we have {Gk = 0} ⊆ {cm(Dk,−Gk) ≥ κ} in this case, ensuring the equivalence by Lemma A.2.

Definition D.1 has the advantage that it is invariant no matter how we choose the value of cm( · , 0),
because the inequality in condition (D.1) is equivalent to

P ({cm(Dk,−Gk) ≥ κ} ∩ {Gk ̸= 0} | Fk−1) ≥ p1(Gk ̸= 0)

according to Lemma A.2. In contrast, Definition 2.2 does rely on this value, as can be illustrated by an

example similar to Example 3.1. In case one defines cm( · , 0) < κ (e.g., cm( · , 0) = 0 may be appealing for

symmetry), Definition 2.2 will be more restrictive than Definition D.1 for the same reason explained in

Remark 3.1. Nevertheless, this does not affect [17], which imposes cm( · , 0) = 1 as mentioned before.
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