Gradient Convergence of Direct Search Based on

Sufficient Decrease

Cunxin Huang* Zaikun Zhang!
February 9, 2026

Abstract

We analyze a direct-search method based on a sufficient decrease condition for
unconstrained smooth optimization. Under standard assumptions, we improve the
classical guarantee liminfy, ||V f(xy)|| = 0 to the full limit limy, ||V f(z)|| = 0. Using
the same technique, we also show that if Vf is only locally Lipschitz, then every

accumulation point is stationary.

Keywords: derivative-free optimization, direct search, sufficient decrease, gradient

convergence

1 Introduction
troduction)?\We consider the unconstrained optimization problem

min f(x), (1.1) ?eq:problem?
rER”™ -

where f: R™ — R is the objective function. In many applications, function values can be
computed but derivative information is unavailable, unreliable, or too costly to obtain. This
motivates derivative-free optimization (DFO) methods [2, 5, 10|, among which direct-search

methods [9] form a major class and are the focus of this paper.

Direct search and known convergence results. At each iteration, a direct-search

method evaluates f along a finite set of directions and uses these evaluations to decide
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whether to accept a step and how to update the step size. These methods fall into
two broad classes. The first is mesh-based direct search, where a trial point is accepted
whenever it improves the current best function value (simple decrease). The direction sets
in this class are tied to a mesh that refines over the iterations. Representative methods
include generalized pattern search (GPS) [12] and mesh adaptive direct search (MADS) [1].
The second class replaces simple decrease with a sufficient decrease condition: a trial
point is accepted only if the decrease in function value exceeds a threshold controlled by a
forcing function (see (2.1)). Without the requirement of mesh geometry, the direction sets
can be chosen more freely.

Under smoothness of f and a uniform quality condition on the direction sets, both

classes guarantee
liminf |V f(zg)]] = 0
k—o0

(see, e.g., [9, Theorem 3.11]), meaning that small gradients appear along a subsequence.
Strengthening this to the full limit is harder and has been a long-standing open question
in direct-search theory. Known results that achieve this stronger guarantee rely on
additional mechanisms, such as complete polling [9, Theorem 3.14] or line-search-type

globalization [11]. A recent survey and further references can be found in [7].

Recent developments. Beyond the classical setting, direct search has been extended to
probabilistic variants [8], decentralized implementations [3], and optimization on Rieman-

nian manifolds [4].

Contribution. We study a direct-search method based on sufficient decrease. Under

standard assumptions, we strengthen the classical lim inf guarantee to

’}LIEO‘|Vf($k)|| = 0. (1.2)‘eq:limit_conve:

No additional mechanism beyond the sufficient decrease condition and the step-size
dynamics is needed. Using the same proof technique, we also show that if V f is only

locally Lipschitz continuous, then every accumulation point of the iterates is stationary.

Organization. Section 2 presents the algorithm and assumptions. Section 3 collects
preliminary results, including the classical lim inf guarantee. Section 4 states and proves
the main theorem (Theorem 4.1), which shows the full limit result (1.2). Section 5 discusses
extensions to the locally Lipschitz continuous gradient setting (Theorem 5.1), and Section 6

offers concluding remarks.



2 Framework and assumptions of the algorithm

c:algorithm) We begin by presenting Algorithm 2.1.

Algorithm 2.1 A simplified direct search based on sufficient decrease

Select o € R™, ap > 0, 0 € (0,1), v € (1,00), and a forcing function p : (0, 00) — (0, 00).
For £ =0,1,2,..., do the following.

1. Generate a set of nonzero vectors D, C R".

2. Check whether there exists a d € D;, such that

rect-search)

f(:Bk) — f(fl?k; + Ozkd) > p(ak). (2.1)‘eq:sufficient_l

3. If such a direction exists, set xp11 = = + apd, a1 = yag; otherwise, set 1 = x4
and agyq = Oay,.

In Algorithm 2.1, the inequality (2.1) is the sufficient decrease condition that governs
whether a trial step is accepted and how to update the step size. There remain two
components to be specified: the direction sets Dy and the forcing function p. Next, we
state the assumptions on the direction sets. To do so, we recall the cosine measure [9],
which quantifies how well a finite set of directions covers all possible descent directions.

o
ne-measure)! Definition 2.1 (Cosine measure). Let D be a finite set of nonzero vectors in R”. The

cosine measure of D with respect to a nonzero vector v is

d"v
cm(D,v) = max
deD ||d]|||v]]
The cosine measure of D is
D) = i D.v).
cm(D) ue%}\l}go}cm( ,0)

We now propose two standard assumptions on the direction sets used in Algorithm 2.1,
requiring that each direction set consists of unit vectors and has a uniformly positive
cosine measure.

unit_length) . ‘ . . , . .
Assumption 2.1. For each k > 0, the direction set Dy, is a finite set of unit vectors in R™.

:D_k . .
(ass:D_ >Assurnptlom 2.2. There ezists a constant k > 0 such that cm(Dy) > k for each k > 0.
In the sufficient decrease condition (2.1), the forcing function p controls how much

decrease is needed for a step to be accepted. The typical requirement on the forcing



function is that p: (0,00) — (0, 00) should be nondecreasing and satisfy p(a) = o(a) as
a — 0. In this paper, we adopt the standard polynomial form [6, 13] as stated in the

following Assumption 2.3.

f i f . . . .
orcing_fun) Assumption 2.3. The forcing function p is of the form p(a) = ca® for some constant ¢ > 0

and p > 1.
We conclude this section with the following remark on Algorithm 2.1.
Remark 2.1. We make two remarks about Algorithm 2.1.

(a) When the sufficient decrease condition (2.1) is not satisfied, Algorithm 2.1 sets
Tr+1 = Tg. In fact, all results in this paper remain valid if we instead set z;.; to any
point satisfying f(x,41) < f(xy). In other words, the sufficient decrease condition
only needs to govern the step-size update; for the iterations where the sufficient

decrease condition is not satisfied, any simple decrease step is allowed.

(b) The usual requirement on the expanding parameter 7 is v > 1. However, in this

paper, we require v > 1, as our proof technique relies on this.

3 Preliminary results

ing_results) Thig section collects several existing results that will be used in the proofs that follow. We

first make two standard assumptions on the objective function.

b ded . . . . . . . . .
wer-bounee >Assumptlon 3.1. The objective function f is continuously differentiable and is bounded

from below.

1i hi . . . . . . . . . .
g_lipschitz) Assumption 3.2. The gradient of the objective function V f is Lipschitz continuous with

Lipschitz constant L > 0.

The following Lemma 3.1 states that the step size converges to zero. This is a direct

consequence of the lower boundedness assumption of f.

epsize_to_0)

Lemma 3.1 ([9, Theorem 3.4]). Consider Algorithm 2.1. Under Assumptions 2.1, 2.3,
and 3.1, we have ay — 0.

The next lemma shows that when the step size is small enough relative to the gradient

norm, at least one direction in Dy, yields a decrease proportional to ||V f ()] a.



scent_lemma)

Lemma 3.2. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, and 3.2, if
ap < K|V f(@)ll/L,

then we have
maxc { (@) = flar+ oxd)} = IV F () o

de

Proof. Since Vf is Lipschitz continuous (Assumption 3.2), for each unit vector d € Dy,

we have

flzr) — flzg + agd) > [—Vf(xk)Td} o — gaz.

By Assumption 2.2, there exists d* € Dy with =V f(zx)"d* > ||V f(z)|. Thus, using
the assumption that ap < xL7Y|V f(zy)]|, we get

far) — flog + apd”) > KHVf(SUk)H@k—gai > gHVf(xk)Hozk,

which completes the proof. n

Combining the two lemmas above yields the classical lim inf convergence guarantee,

stated below as Theorem 3.1. We will strengthen it to a full limit in Section 4.

nLiminf g5 p corem 3.1 (9, Theorem 3.11]). Consider Algorithm 2.1. Under Assumptions 2.1, 2.2,

2.3, 3.1, and 3.2, we have
liminf |V f(x)|| = 0.
k—o0

4 Main results

ain_results) This section contains the main results of this paper. In Section 4.1, we state the main
theorem and outline the proof strategy. In Section 4.2, we introduce auxiliary level sets
and stopping times, and establish several supporting lemmas. In Section 4.3, we combine

these lemmas to complete the proof.

4.1 Main theorem and proof strategy

ain_theorem) We now state our main result.

convergence)

Theorem 4.1. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 3.2,

we have
khm IV f(zx)] = 0. (4.1) 7eq:1imit_conve
—00 -

bt



Recall that the classical theory guarantees only lim infy ||V f(zx)|| = 0 (Theorem 3.1).
To upgrade this to a full limit, we argue by contradiction and analyze the repeated crossings
of the iterates between a region where |V f|| is small and a region where it is bounded
away from zero. The two main ingredients are (i) the Lipschitz continuity of V f, which
ensures a positive separation between these two regions, and (ii) the step-size dynamics
implied by the sufficient decrease mechanism.

4.2 Level sets of the gradient norm and stopping times

:1level_sets) For a given € > 0, we define two level sets of the gradient norm:

Se = {r e R [Vf()] < e}, (4.2)[oq:8 Lover]
and
SS = {z e R" : ||V f(z)|| > 2¢}. (4.3)

ist_g_level) Lemma 4.1. Under Assumption 3.2, for any € > 0, we have

dist(5%,55) > €/L.
Proof. By Assumption 3.2, for any x € S¢ and y € S, we have

Lz =yl = [[Vf(z) =Vl = IVIWI = IVI@] = e

where the last inequality follows from the definitions of S¢ and S¢ in (4.2) and (4.3),
respectively. Taking the infimum over all such x and y gives the desired result. O]

cess_region)

Lemma 4.2. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 3.2, for
any € > 0, there evists K< > 0 such that, for all k > K¢, if x;, ¢ S, then the sufficient

decrease condition (2.1) is satisfied, and hence o1 = yoy.

Proof. By Lemma 3.2 and the definition of S in (4.2), if ax < xe/L and z; ¢ S, then

we have

RE

grel%f{f(xk) — flog + ad)} > 5 k-

Since ay, — 0 (Lemma 3.1) and p(a) = ca? (Assumption 2.3), there exists K¢ > 0 such

that, for each & > K¢,
. (ke [Re\ T
o < min{ 7 ()

so that keay /2 > p(ag). This completes the proof. O



Given € > 0, we define the sequences of stopping times {m$} and {n§} inductively as
follows. First, let

mg = inf{k > K°:x, € S<}, (4.4)[eq:mo]
representing the first index at which the iterates enter the large-gradient region S after

iteration K€. Then, for each j > 0, we define

ns = inf{k >mj:x, € ST and 21 ¢ S}, (4.5)[eq: time_out]|
and

m§,, = inf{k >nj: 2, €SS and 7y ¢ SS}. (4.6)[eq: time_in]

Intuitively, the sequence {m$} records the iteration indices when the iterates {x;} enter
the large gradient region S¢, while the sequence {n$} records the iteration indices when

they enter the small gradient region St.

notes_mjnj) [ ermma 4.3. For each j > 0 and each k € [m§,n§ — 1], we have

IVf(@e)l| > € and  apyr = yay.

Proof. By the definitions of m§ in (4.4) and (4.6), and of n§ in (4.5), every zj lies
outside S¢ if k € [m§,n§ — 1], so [[Vf(xy)| > €. Lemma 4.2 then gives a1 = yoy,. O

itely_often) | o\nma 4.4. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.5, 8.1, and 3.2, if

lim sup ||V f (zx)]| > 0,

k—o0

then

€ € N
m; < 00 and n; < oo for each 7 >0,

where € = limsupy, ||V f(zx)]|/3.

Proof. The result follows readily from Theorem 3.1, but we give a self-contained proof by
induction.

Base case. Since limsupy ||V f(zy)| = 3¢ > 2¢, infinitely many iterates lie in S,
so m§ < oo. If nj = oo, then Lemma 4.3 gives a1 = vyay, for all &k > m§, contradict-
ing o, — 0 (Lemma 3.1). Hence n§ < oo.

Induction step. Assume that m$ and n$ are finite. Since infinitely many iter-
ates lie in S¢ and Tne € S<, there exists a first index k > n§ at which z; € S<
and 1 ¢ SS, so m§,, < oo. If n§,, = oo, the same contradiction as in the base
case arises. Hence nj ; < oo, completing the induction. O

7



For each j > 0, we define

Af; = f(.%‘m§) — f(zne), (4.7)‘eq:de1ta_f_j_e;

and

: (4.8)‘eq:D_j_epsilon

Lower_bound) | emyma 4.5. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.8, 3.1, and 3.2, if

limsup [V (@] > 0,

k—o0
then
DS > €/L, for each j >0,
where € = limsupy, ||V f(zx)]] /3.

Proof. Since z,,c € S and x,c € S, Lemma 4.1 gives
J > J <

Dj = |[@mg — Tns

> dist(95,55) > €/L. ]
ta_f_j_to_0) Lemma 4.6. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 3.2, if

limsup |V f(zx)|| > 0,

k—oo

then Afs — 0 as j — oo, where € = limsupy, |V f(z)||/3.

Proof. The proof follows from Assumption 3.1 that f is lower bounded. m

unded_ratio)

Lemma 4.7. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.8, 3.1, and 3.2, if
lim sup |V £ (1) | > 0.
k—o0

then there exists a constant C > 0 such that

Afs
Dy

> C' forallj >0,

where € = limsupy, ||V f(zx)]|/3.
Proof. By Lemma 4.3, for each k € [m$, nS — 1], we have

VERSY

|Tes1 — 2kl = on, g1 = you, and  f(ag) — f(Trg1) > clow)?,



where the first equality holds because all directions are unit vectors (Assumption 2.1).
Hence, by the definition of D§ and Aff, we have

nS—1 ns

c—mS—1
J J J Oém§ . .
D; < Z o = Ozm§ ’)/k = 7—_]1 (’)/nj_mj — 1), (4.9) ?eq:D_bound?
ke=m k=0
and
n;fl n;fm;fl Ca;zﬁ
Af; > Z C(Ozk)p = caﬁ; (’)/k)p = ’}/p —Jl <’yp(nj_mj) — 1> . (4.10) ?eq:delta_f_bot
k=ms; k=0
Hence, we have
Aff o cy=1rEn)sTm -1
D5y = Tr—1 (5 -1
_ 1)
S ch=pr L
- ,-Yp —1 ,yp(nj*mj)
— 1) 1 — 1)
c(y—1) [1__] _ =y
’Yp —1 f)/P 'yp
which completes the proof. O]

4.3 Proof of Theorem 4.1

:proof_main) We are now ready to prove Theorem 4.1 by combining the lemmas established above.

Proof. By Theorem 3.1, it suffices to show that

limsup ||V f(zx)]| = 0. (4.11)‘eq:convergence

k—oo

We prove by contradiction. Suppose (4.11) is false. Then we define
1.
e = —limsup||Vf(z)| > 0.
3 k—o00

By Lemma 4.7, there exists a constant C' > 0 such that Af; > C(D5)? for all j > 0.
On the other hand, Lemma 4.6 gives Aff — 0 as j — oo, which forces D — 0. This
contradicts D§ > ¢/L > 0 (Lemma 4.5), which completes the proof. O



5 Extensions to locally Lipschitz continuous gradients

rextensions) The proof of Theorem 4.1 uses the global Lipschitz continuity of Vf (Assumption 3.2) in
two places: the descent lemma (Lemma 3.2) and the separation of the gradient level sets
(Lemma 4.1). In this section, we show that the same proof technique applies under the
weaker assumption that V f is only locally Lipschitz continuous, yielding a stationarity

result for the limit points of the iterates.
1i hi . . . . . . . . .
y-lipschitz) Assumption 5.1. The gradient of the objective function V f s locally Lipschitz continuous.
Note that Assumption 5.1 is weaker than Assumption 3.2. The conclusion of Lemma 3.1
(cy, — 0) remains valid since it does not require Assumption 3.2. We now state the main

result of this section.

_stationary)

Theorem 5.1. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 5.1,

every limit point of {xx} is a stationary point of f.

The remainder of this section proves Theorem 5.1. Let z* be an arbitrary limit point
of {z\}; we fix it for the rest of this section. The argument parallels that of Theorem 4.1,
with the gradient level sets S¢ and S< replaced by balls centered at z*.

Setup. Suppose, for contradiction, that Vf(z*) # 0. By Assumption 5.1 and the
continuity of V f, there exist 6 > 0 and L, > 0 such that V f is L,-Lipschitz continuous
on B(z*,26) and

V()] = |IVf(z")]]/2 for all x € B(z",2)). (5.1)‘eq:grad_lower_‘

Set e = [|[V f(z*)]|/2 > 0 and define
A = B(z*,6/2), B = B(z*,6)". (5.2) 7eq:AB_sets?

Note that dist(A, B) =4/2 > 0.
The following lemma is the counterpart of Lemma 4.2.

egion_local)

Lemma 5.1. Under the setup above, there exists K > 0 such that, for all k > K,
if i, € B(x*,0), then the sufficient decrease condition (2.1) is satisfied, and hence g1 = you |}

Proof. The proof follows that of Lemma 4.2, with L replaced by L. and “z; ¢ S<” replaced
by “xp € B(xz*,6)”. By (5.1), every x;, € B(x*,0) satisfies |V f(xy)|| > e. Since ag, — 0
(Lemma 3.1), we choose K large enough that «j < min{ke/L,, 6, (ke/(2¢))"/®P=1} for
all k > K. The condition oy, < 0 ensures xy + aid € B(z*,20) whenever z; € B(z*,0)
and ||d|| = 1, so the Lipschitz bound applies to the descent inequality. O

10



We define the stopping times as in (4.4)—(4.6), with A and B playing the roles of S¢

and S¢:
mo = inf{k > K : x), € A}, (5.3) 7eq:m0_local?
n; = inf{k >my Xy € B}, (5.4) ?eq:nj_local?
mj+1 = inf{k >n;: 2, € A} (5.5) ?eq:mj_local?

The next lemma shows that, between entering A and exiting B(z*,d), the iterates
behave exactly as in the crossings of Section 4.2.

anics_local) Lemma 5.2. Under the setup above, for each j > 0 and each k € [m;,n; — 1], we have

x € B(z*,0), ||Vf(zp)] > € and oy = yag.

Proof. Identical to the proof of Lemma 4.3, with S¢ replaced by B = B(x*,é)D and
Lemma 4.2 replaced by Lemma 5.1. [

The next lemma is the counterpart of Lemma 4.4: the iterates cross between A and B
infinitely often.

ing_local)? '
sing-local)?y cmma 5.3. Under the setup above, my; < oo and n; < oo for each j = 0.

Proof. Since z* is a limit point, infinitely many iterates lie in A = B(z*,40/2), so m; < oo
for each j. If n; = oo for some j, then Lemma 5.2 gives aj41 = yay, for all & > m;,

contradicting oy, — 0 (Lemma 3.1). Hence n; < oo. O

For each j > 0, define Af; = f(2m,) — f(2n,) and D; = ||y, — || as in (4.7)-(4.8).
The final lemma combines the counterparts of Lemmas 4.5, 4.6, and 4.7.

ds_1 1
cunds_locally o mma 5.4. Under the setup above:

(a) D; >6/2 for each j > 0.
(b) Af; =0 as j — oo.
(c) There exists a constant C > 0 such that Af; > C (D;)? for all j > 0.

Proof. (a) Since z,,,, € A and x,,;, € B, we have D; > dist(A, B) = §/2.
(b) Since f is nonincreasing along the iterates and bounded below (Assumption 3.1),
the intervals [m;, n;| are disjoint, and Zj Af; < f(xp,) —inf f < co. Hence Af; — 0.
(c) By Lemma 5.2, between m; and n; — 1 the step sizes grow geometrically and each

step achieves sufficient decrease. The computation is then identical to that of Lemma 4.7,
yielding Af;/(D;)P > c(y — 1)?/~+* > 0. O

11



Proof of Theorem 5.1. By Lemma 5.4(c), Af; > C (D,)P for all j. By Lemma 5.4(b),
Af; — 0, which forces D; — 0. This contradicts D; > ¢§/2 > 0 from Lemma 5.4(a). Hence,
every limit point of {z}} is stationary. O

Remark 5.1. As noted in the remark following Assumption 2.3, the proofs of both
Theorem 4.1 and Theorem 5.1 remain valid if, on unsuccessful iterations, the algorithm

sets x4 to any point satisfying f(xpe1) < f(xp).

6 Concluding remarks

conclusions) We have shown that a direct-search method based on sufficient decrease achieves the full-
limit gradient convergence limy ||V f(xy)|| = 0 under standard assumptions (Theorem 4.1).
The key idea is to analyze the repeated crossings of the iterates between small-gradient
and large-gradient regions: the Lipschitz continuity of V f forces each crossing to cover a
positive distance, while the step-size dynamics ensure that each crossing costs a function
decrease bounded below relative to the distance traveled. Since the total function decrease
is finite, these crossings cannot occur infinitely often, giving a contradiction. We have also
extended this result to the locally Lipschitz setting, showing that every limit point of the
iterates is stationary (Theorem 5.1).

We close with two open questions.

e Our analysis requires the step-size expansion factor v > 1 in Algorithm 2.1. The
classical theory allows v = 1, i.e., no expansion on successful steps. Can the full-limit
result limy ||V f(xy)|| = 0 still be established when v = 17

e Can these results be extended to probabilistic direct-search methods [8]? In particular,
does the gradient norm converge to zero almost surely under appropriate probabilistic
assumptions on the direction sets?
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