
Gradient Convergence of Direct Search Based on

Sufficient Decrease

Cunxin Huang∗ Zaikun Zhang†

February 9, 2026

Abstract

We analyze a direct-search method based on a sufficient decrease condition for

unconstrained smooth optimization. Under standard assumptions, we improve the

classical guarantee lim infk ∥∇f(xk)∥ = 0 to the full limit limk ∥∇f(xk)∥ = 0. Using

the same technique, we also show that if ∇f is only locally Lipschitz, then every

accumulation point is stationary.

Keywords: derivative-free optimization, direct search, sufficient decrease, gradient

convergence

1 Introduction

?⟨sec:introduction⟩?We consider the unconstrained optimization problem

min
x∈Rn

f(x), (1.1) ?eq:problem?

where f : Rn → R is the objective function. In many applications, function values can be

computed but derivative information is unavailable, unreliable, or too costly to obtain. This

motivates derivative-free optimization (DFO) methods [2, 5, 10], among which direct-search

methods [9] form a major class and are the focus of this paper.

Direct search and known convergence results. At each iteration, a direct-search

method evaluates f along a finite set of directions and uses these evaluations to decide

∗Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China

(cun-xin.huang@connect.polyu.hk).
†School of Mathematics, Sun Yat-sen University, China (zhangzaikun@mail.sysu.edu.cn).

1



whether to accept a step and how to update the step size. These methods fall into

two broad classes. The first is mesh-based direct search, where a trial point is accepted

whenever it improves the current best function value (simple decrease). The direction sets

in this class are tied to a mesh that refines over the iterations. Representative methods

include generalized pattern search (GPS) [12] and mesh adaptive direct search (MADS) [1].

The second class replaces simple decrease with a sufficient decrease condition: a trial

point is accepted only if the decrease in function value exceeds a threshold controlled by a

forcing function (see (2.1)). Without the requirement of mesh geometry, the direction sets

can be chosen more freely.

Under smoothness of f and a uniform quality condition on the direction sets, both

classes guarantee

lim inf
k→∞

∥∇f(xk)∥ = 0

(see, e.g., [9, Theorem 3.11]), meaning that small gradients appear along a subsequence.

Strengthening this to the full limit is harder and has been a long-standing open question

in direct-search theory. Known results that achieve this stronger guarantee rely on

additional mechanisms, such as complete polling [9, Theorem 3.14] or line-search-type

globalization [11]. A recent survey and further references can be found in [7].

Recent developments. Beyond the classical setting, direct search has been extended to

probabilistic variants [8], decentralized implementations [3], and optimization on Rieman-

nian manifolds [4].

Contribution. We study a direct-search method based on sufficient decrease. Under

standard assumptions, we strengthen the classical lim inf guarantee to

lim
k→∞

∥∇f(xk)∥ = 0. (1.2) eq:limit_convergence_intro

No additional mechanism beyond the sufficient decrease condition and the step-size

dynamics is needed. Using the same proof technique, we also show that if ∇f is only

locally Lipschitz continuous, then every accumulation point of the iterates is stationary.

Organization. Section 2 presents the algorithm and assumptions. Section 3 collects

preliminary results, including the classical lim inf guarantee. Section 4 states and proves

the main theorem (Theorem 4.1), which shows the full limit result (1.2). Section 5 discusses

extensions to the locally Lipschitz continuous gradient setting (Theorem 5.1), and Section 6

offers concluding remarks.

2



2 Framework and assumptions of the algorithm

⟨sec:algorithm⟩We begin by presenting Algorithm 2.1.

Algorithm 2.1 A simplified direct search based on sufficient decrease
⟨alg:direct-search⟩ Select x0 ∈ Rn, α0 > 0, θ ∈ (0, 1), γ ∈ (1,∞), and a forcing function ρ : (0,∞) → (0,∞).

For k = 0, 1, 2, . . . , do the following.

1. Generate a set of nonzero vectors Dk ⊂ Rn.

2. Check whether there exists a d ∈ Dk such that

f(xk)− f(xk + αkd) > ρ(αk). (2.1) eq:sufficient_decrease

3. If such a direction exists, set xk+1 = xk + αkd, αk+1 = γαk; otherwise, set xk+1 = xk

and αk+1 = θαk.

In Algorithm 2.1, the inequality (2.1) is the sufficient decrease condition that governs

whether a trial step is accepted and how to update the step size. There remain two

components to be specified: the direction sets Dk and the forcing function ρ. Next, we

state the assumptions on the direction sets. To do so, we recall the cosine measure [9],

which quantifies how well a finite set of directions covers all possible descent directions.

?⟨def:cosine_measure⟩?
Definition 2.1 (Cosine measure). Let D be a finite set of nonzero vectors in Rn. The

cosine measure of D with respect to a nonzero vector v is

cm(D, v) = max
d∈D

dTv

∥d∥∥v∥
.

The cosine measure of D is

cm(D) = min
v∈Rn\{0}

cm(D, v).

We now propose two standard assumptions on the direction sets used in Algorithm 2.1,

requiring that each direction set consists of unit vectors and has a uniformly positive

cosine measure.

⟨ass:unit_length⟩
Assumption 2.1. For each k ≥ 0, the direction set Dk is a finite set of unit vectors in Rn.

⟨ass:D_k⟩
Assumption 2.2. There exists a constant κ > 0 such that cm(Dk) ≥ κ for each k ≥ 0.

In the sufficient decrease condition (2.1), the forcing function ρ controls how much

decrease is needed for a step to be accepted. The typical requirement on the forcing

3



function is that ρ : (0,∞) → (0,∞) should be nondecreasing and satisfy ρ(α) = o(α) as

α → 0+. In this paper, we adopt the standard polynomial form [6, 13] as stated in the

following Assumption 2.3.

⟨ass:forcing_fun⟩
Assumption 2.3. The forcing function ρ is of the form ρ(α) = cαp for some constant c > 0

and p > 1.

We conclude this section with the following remark on Algorithm 2.1.

Remark 2.1. We make two remarks about Algorithm 2.1.

(a) When the sufficient decrease condition (2.1) is not satisfied, Algorithm 2.1 sets

xk+1 = xk. In fact, all results in this paper remain valid if we instead set xk+1 to any

point satisfying f(xk+1) ≤ f(xk). In other words, the sufficient decrease condition

only needs to govern the step-size update; for the iterations where the sufficient

decrease condition is not satisfied, any simple decrease step is allowed.

(b) The usual requirement on the expanding parameter γ is γ ≥ 1. However, in this

paper, we require γ > 1, as our proof technique relies on this.

3 Preliminary results

⟨sec:existing_results⟩This section collects several existing results that will be used in the proofs that follow. We

first make two standard assumptions on the objective function.

⟨ass:function_lower_bounded⟩
Assumption 3.1. The objective function f is continuously differentiable and is bounded

from below.

⟨ass:function_g_lipschitz⟩
Assumption 3.2. The gradient of the objective function ∇f is Lipschitz continuous with

Lipschitz constant L > 0.

The following Lemma 3.1 states that the step size converges to zero. This is a direct

consequence of the lower boundedness assumption of f .

⟨lem:stepsize_to_0⟩
Lemma 3.1 ([9, Theorem 3.4]). Consider Algorithm 2.1. Under Assumptions 2.1, 2.3,

and 3.1, we have αk → 0.

The next lemma shows that when the step size is small enough relative to the gradient

norm, at least one direction in Dk yields a decrease proportional to ∥∇f(xk)∥αk.

4



⟨lem:descent_lemma⟩
Lemma 3.2. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, and 3.2, if

αk ≤ κ∥∇f(xk)∥/L,

then we have

max
d∈Dk

{f(xk)− f(xk + αkd)} ≥ κ

2
∥∇f(xk)∥αk.

Proof. Since ∇f is Lipschitz continuous (Assumption 3.2), for each unit vector d ∈ Dk

we have

f(xk)− f(xk + αkd) ≥
[
−∇f(xk)

⊤d
]
αk −

L

2
α2
k.

By Assumption 2.2, there exists d∗ ∈ Dk with −∇f(xk)
⊤d∗ ≥ κ∥∇f(xk)∥. Thus, using

the assumption that αk ≤ κL−1∥∇f(xk)∥, we get

f(xk)− f(xk + αkd
∗) ≥ κ∥∇f(xk)∥αk −

L

2
α2
k ≥ κ

2
∥∇f(xk)∥αk,

which completes the proof.

Combining the two lemmas above yields the classical lim inf convergence guarantee,

stated below as Theorem 3.1. We will strengthen it to a full limit in Section 4.

⟨thm:liminf_gk⟩
Theorem 3.1 ([9, Theorem 3.11]). Consider Algorithm 2.1. Under Assumptions 2.1, 2.2,

2.3, 3.1, and 3.2, we have

lim inf
k→∞

∥∇f(xk)∥ = 0.

4 Main results

⟨sec:main_results⟩This section contains the main results of this paper. In Section 4.1, we state the main

theorem and outline the proof strategy. In Section 4.2, we introduce auxiliary level sets

and stopping times, and establish several supporting lemmas. In Section 4.3, we combine

these lemmas to complete the proof.

4.1 Main theorem and proof strategy

⟨subsec:main_theorem⟩We now state our main result.

⟨thm:limit_convergence⟩
Theorem 4.1. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 3.2,

we have

lim
k→∞

∥∇f(xk)∥ = 0. (4.1) ?eq:limit_convergence?

5



Recall that the classical theory guarantees only lim infk ∥∇f(xk)∥ = 0 (Theorem 3.1).

To upgrade this to a full limit, we argue by contradiction and analyze the repeated crossings

of the iterates between a region where ∥∇f∥ is small and a region where it is bounded

away from zero. The two main ingredients are (i) the Lipschitz continuity of ∇f , which

ensures a positive separation between these two regions, and (ii) the step-size dynamics

implied by the sufficient decrease mechanism.

4.2 Level sets of the gradient norm and stopping times

⟨subsec:level_sets⟩For a given ϵ > 0, we define two level sets of the gradient norm:

Sϵ
≤ = {x ∈ Rn : ∥∇f(x)∥ ≤ ϵ}, (4.2) eq:S_lower

and

Sϵ
> = {x ∈ Rn : ∥∇f(x)∥ > 2ϵ}. (4.3) eq:S_greater

⟨lem:dist_g_level⟩
Lemma 4.1. Under Assumption 3.2, for any ϵ > 0, we have

dist(Sϵ
≤, S

ϵ
>) ≥ ϵ/L.

Proof. By Assumption 3.2, for any x ∈ Sϵ
≤ and y ∈ Sϵ

>, we have

L∥x− y∥ ≥ ∥∇f(x)−∇f(y)∥ ≥ ∥∇f(y)∥ − ∥∇f(x)∥ ≥ ϵ,

where the last inequality follows from the definitions of Sϵ
≤ and Sϵ

> in (4.2) and (4.3),

respectively. Taking the infimum over all such x and y gives the desired result.

⟨lem:success_region⟩
Lemma 4.2. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 3.2, for

any ϵ > 0, there exists Kϵ ≥ 0 such that, for all k ≥ Kϵ, if xk /∈ Sϵ
≤, then the sufficient

decrease condition (2.1) is satisfied, and hence αk+1 = γαk.

Proof. By Lemma 3.2 and the definition of Sϵ
≤ in (4.2), if αk ≤ κϵ/L and xk /∈ Sϵ

≤, then

we have

max
d∈Dk

{f(xk)− f(xk + αkd)} ≥ κϵ

2
αk.

Since αk → 0 (Lemma 3.1) and ρ(α) = cαp (Assumption 2.3), there exists Kϵ ≥ 0 such

that, for each k ≥ Kϵ,

αk ≤ min

{
κϵ

L
,
(κϵ
2c

) 1
p−1

}
so that κϵαk/2 ≥ ρ(αk). This completes the proof.

6



Given ϵ > 0, we define the sequences of stopping times {mϵ
j} and {nϵ

j} inductively as

follows. First, let

mϵ
0 = inf{k ≥ Kϵ : xk ∈ Sϵ

>}, (4.4) eq:m0

representing the first index at which the iterates enter the large-gradient region Sϵ
> after

iteration Kϵ. Then, for each j ≥ 0, we define

nϵ
j = inf{k > mϵ

j : xk ∈ Sϵ
≤ and xk−1 /∈ Sϵ

≤}, (4.5) eq:time_out

and

mϵ
j+1 = inf{k > nϵ

j : xk ∈ Sϵ
> and xk−1 /∈ Sϵ

>}. (4.6) eq:time_in

Intuitively, the sequence {mϵ
j} records the iteration indices when the iterates {xk} enter

the large gradient region Sϵ
>, while the sequence {nϵ

j} records the iteration indices when

they enter the small gradient region Sϵ
≤.

⟨lem:notes_mj_nj⟩Lemma 4.3. For each j ≥ 0 and each k ∈ [mϵ
j, n

ϵ
j − 1], we have

∥∇f(xk)∥ > ϵ and αk+1 = γαk.

Proof. By the definitions of mϵ
j in (4.4) and (4.6), and of nϵ

j in (4.5), every xk lies

outside Sϵ
≤ if k ∈ [mϵ

j, n
ϵ
j − 1], so ∥∇f(xk)∥ > ϵ. Lemma 4.2 then gives αk+1 = γαk.

⟨lem:crossing_infinitely_often⟩Lemma 4.4. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 3.2, if

lim sup
k→∞

∥∇f(xk)∥ > 0,

then

mϵ
j < ∞ and nϵ

j < ∞ for each j ≥ 0,

where ϵ = lim supk ∥∇f(xk)∥/3.

Proof. The result follows readily from Theorem 3.1, but we give a self-contained proof by

induction.

Base case. Since lim supk ∥∇f(xk)∥ = 3ϵ > 2ϵ, infinitely many iterates lie in Sϵ
>,

so mϵ
0 < ∞. If nϵ

0 = ∞, then Lemma 4.3 gives αk+1 = γαk for all k ≥ mϵ
0, contradict-

ing αk → 0 (Lemma 3.1). Hence nϵ
0 < ∞.

Induction step. Assume that mϵ
j and nϵ

j are finite. Since infinitely many iter-

ates lie in Sϵ
> and xnϵ

j
∈ Sϵ

≤, there exists a first index k > nϵ
j at which xk ∈ Sϵ

>

and xk−1 /∈ Sϵ
>, so mϵ

j+1 < ∞. If nϵ
j+1 = ∞, the same contradiction as in the base

case arises. Hence nϵ
j+1 < ∞, completing the induction.

7



For each j ≥ 0, we define

∆f ϵ
j = f(xmϵ

j
)− f(xnϵ

j
), (4.7) eq:delta_f_j_epsilon

and

Dϵ
j = ∥xmϵ

j
− xnϵ

j
∥. (4.8) eq:D_j_epsilon

⟨lem:D_j_lower_bound⟩Lemma 4.5. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 3.2, if

lim sup
k→∞

∥∇f(xk)∥ > 0,

then

Dϵ
j ≥ ϵ/L, for each j ≥ 0,

where ϵ = lim supk ∥∇f(xk)∥/3.

Proof. Since xmϵ
j
∈ Sϵ

> and xnϵ
j
∈ Sϵ

≤, Lemma 4.1 gives

Dϵ
j = ∥xmϵ

j
− xnϵ

j
∥ ≥ dist(Sϵ

≤, S
ϵ
>) ≥ ϵ/L.

⟨lem:Delta_f_j_to_0⟩Lemma 4.6. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 3.2, if

lim sup
k→∞

∥∇f(xk)∥ > 0,

then ∆f ϵ
j → 0 as j → ∞, where ϵ = lim supk ∥∇f(xk)∥/3.

Proof. The proof follows from Assumption 3.1 that f is lower bounded.

⟨lem:bounded_ratio⟩
Lemma 4.7. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 3.2, if

lim sup
k→∞

∥∇f(xk)∥ > 0,

then there exists a constant C > 0 such that

∆f ϵ
j

(Dϵ
j)

p
≥ C for all j ≥ 0,

where ϵ = lim supk ∥∇f(xk)∥/3.

Proof. By Lemma 4.3, for each k ∈ [mϵ
j, n

ϵ
j − 1], we have

∥xk+1 − xk∥ = αk, αk+1 = γαk, and f(xk)− f(xk+1) ≥ c(αk)
p,

8



where the first equality holds because all directions are unit vectors (Assumption 2.1).

Hence, by the definition of Dϵ
j and ∆f ϵ

j , we have

Dϵ
j ≤

nϵ
j−1∑

k=mϵ
j

αk = αmϵ
j

nϵ
j−mϵ

j−1∑
k=0

γk =
αmϵ

j

γ − 1

(
γnϵ

j−mϵ
j − 1

)
, (4.9) ?eq:D_bound?

and

∆f ϵ
j ≥

nϵ
j−1∑

k=mϵ
j

c(αk)
p = cαp

mϵ
j

nϵ
j−mϵ

j−1∑
k=0

(γk)p =
cαp

mϵ
j

γp − 1

(
γp(nϵ

j−mϵ
j) − 1

)
. (4.10) ?eq:delta_f_bound?

Hence, we have

∆f ϵ
j

(Dϵ
j)

p
≥ c(γ − 1)p

γp − 1

(γp)n
ϵ
j−mϵ

j − 1

(γnϵ
j−mϵ

j − 1)p

≥ c(γ − 1)p

γp − 1

[
1− 1

γp(nϵ
j−mϵ

j)

]
≥ c(γ − 1)p

γp − 1

[
1− 1

γp

]
=

c(γ − 1)p

γp
> 0,

which completes the proof.

4.3 Proof of Theorem 4.1

⟨subsec:proof_main⟩We are now ready to prove Theorem 4.1 by combining the lemmas established above.

Proof. By Theorem 3.1, it suffices to show that

lim sup
k→∞

∥∇f(xk)∥ = 0. (4.11) eq:convergence_to_prove

We prove by contradiction. Suppose (4.11) is false. Then we define

ϵ =
1

3
lim sup
k→∞

∥∇f(xk)∥ > 0.

By Lemma 4.7, there exists a constant C > 0 such that ∆f ϵ
j ≥ C(Dϵ

j)
p for all j ≥ 0.

On the other hand, Lemma 4.6 gives ∆f ϵ
j → 0 as j → ∞, which forces Dϵ

j → 0. This

contradicts Dϵ
j ≥ ϵ/L > 0 (Lemma 4.5), which completes the proof.

9



5 Extensions to locally Lipschitz continuous gradients

⟨sec:extensions⟩The proof of Theorem 4.1 uses the global Lipschitz continuity of ∇f (Assumption 3.2) in

two places: the descent lemma (Lemma 3.2) and the separation of the gradient level sets

(Lemma 4.1). In this section, we show that the same proof technique applies under the

weaker assumption that ∇f is only locally Lipschitz continuous, yielding a stationarity

result for the limit points of the iterates.

⟨ass:function_g_locally_lipschitz⟩
Assumption 5.1. The gradient of the objective function ∇f is locally Lipschitz continuous.

Note that Assumption 5.1 is weaker than Assumption 3.2. The conclusion of Lemma 3.1

(αk → 0) remains valid since it does not require Assumption 3.2. We now state the main

result of this section.

⟨thm:limit_points_stationary⟩
Theorem 5.1. Consider Algorithm 2.1. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 5.1,

every limit point of {xk} is a stationary point of f .

The remainder of this section proves Theorem 5.1. Let x∗ be an arbitrary limit point

of {xk}; we fix it for the rest of this section. The argument parallels that of Theorem 4.1,

with the gradient level sets Sϵ
≤ and Sϵ

> replaced by balls centered at x∗.

Setup. Suppose, for contradiction, that ∇f(x∗) ̸= 0. By Assumption 5.1 and the

continuity of ∇f , there exist δ > 0 and L∗ > 0 such that ∇f is L∗-Lipschitz continuous

on B(x∗, 2δ) and

∥∇f(x)∥ ≥ ∥∇f(x∗)∥/2 for all x ∈ B(x∗, 2δ). (5.1) eq:grad_lower_bound_ball

Set ϵ = ∥∇f(x∗)∥/2 > 0 and define

A = B(x∗, δ/2), B = B(x∗, δ)∁. (5.2) ?eq:AB_sets?

Note that dist(A,B) = δ/2 > 0.

The following lemma is the counterpart of Lemma 4.2.

⟨lem:success_region_local⟩
Lemma 5.1. Under the setup above, there exists K ≥ 0 such that, for all k ≥ K,

if xk ∈ B(x∗, δ), then the sufficient decrease condition (2.1) is satisfied, and hence αk+1 = γαk.

Proof. The proof follows that of Lemma 4.2, with L replaced by L∗ and “xk /∈ Sϵ
≤” replaced

by “xk ∈ B(x∗, δ)”. By (5.1), every xk ∈ B(x∗, δ) satisfies ∥∇f(xk)∥ ≥ ϵ. Since αk → 0

(Lemma 3.1), we choose K large enough that αk ≤ min{κϵ/L∗, δ, (κϵ/(2c))
1/(p−1)} for

all k ≥ K. The condition αk ≤ δ ensures xk + αkd ∈ B(x∗, 2δ) whenever xk ∈ B(x∗, δ)

and ∥d∥ = 1, so the Lipschitz bound applies to the descent inequality.

10



We define the stopping times as in (4.4)–(4.6), with A and B playing the roles of Sϵ
>

and Sϵ
≤:

m0 = inf{k ≥ K : xk ∈ A}, (5.3) ?eq:m0_local?

nj = inf{k > mj : xk ∈ B}, (5.4) ?eq:nj_local?

mj+1 = inf{k > nj : xk ∈ A}. (5.5) ?eq:mj_local?

The next lemma shows that, between entering A and exiting B(x∗, δ), the iterates

behave exactly as in the crossings of Section 4.2.

⟨lem:dynamics_local⟩
Lemma 5.2. Under the setup above, for each j ≥ 0 and each k ∈ [mj, nj − 1], we have

xk ∈ B(x∗, δ), ∥∇f(xk)∥ ≥ ϵ, and αk+1 = γαk.

Proof. Identical to the proof of Lemma 4.3, with Sϵ
≤ replaced by B = B(x∗, δ)∁ and

Lemma 4.2 replaced by Lemma 5.1.

The next lemma is the counterpart of Lemma 4.4: the iterates cross between A and B

infinitely often.

?⟨lem:crossing_local⟩?
Lemma 5.3. Under the setup above, mj < ∞ and nj < ∞ for each j ≥ 0.

Proof. Since x∗ is a limit point, infinitely many iterates lie in A = B(x∗, δ/2), so mj < ∞
for each j. If nj = ∞ for some j, then Lemma 5.2 gives αk+1 = γαk for all k ≥ mj,

contradicting αk → 0 (Lemma 3.1). Hence nj < ∞.

For each j ≥ 0, define ∆fj = f(xmj
)− f(xnj

) and Dj = ∥xmj
− xnj

∥ as in (4.7)–(4.8).

The final lemma combines the counterparts of Lemmas 4.5, 4.6, and 4.7.

⟨lem:bounds_local⟩
Lemma 5.4. Under the setup above:

(a) Dj ≥ δ/2 for each j ≥ 0.

(b) ∆fj → 0 as j → ∞.

(c) There exists a constant C > 0 such that ∆fj ≥ C (Dj)
p for all j ≥ 0.

Proof. (a) Since xmj
∈ A and xnj

∈ B, we have Dj ≥ dist(A,B) = δ/2.

(b) Since f is nonincreasing along the iterates and bounded below (Assumption 3.1),

the intervals [mj, nj] are disjoint, and
∑

j ∆fj ≤ f(xm0)− inf f < ∞. Hence ∆fj → 0.

(c) By Lemma 5.2, between mj and nj − 1 the step sizes grow geometrically and each

step achieves sufficient decrease. The computation is then identical to that of Lemma 4.7,

yielding ∆fj/(Dj)
p ≥ c(γ − 1)p/γp > 0.

11



Proof of Theorem 5.1. By Lemma 5.4(c), ∆fj ≥ C (Dj)
p for all j. By Lemma 5.4(b),

∆fj → 0, which forces Dj → 0. This contradicts Dj ≥ δ/2 > 0 from Lemma 5.4(a). Hence,

every limit point of {xk} is stationary.

Remark 5.1. As noted in the remark following Assumption 2.3, the proofs of both

Theorem 4.1 and Theorem 5.1 remain valid if, on unsuccessful iterations, the algorithm

sets xk+1 to any point satisfying f(xk+1) ≤ f(xk).

6 Concluding remarks

⟨sec:conclusions⟩We have shown that a direct-search method based on sufficient decrease achieves the full-

limit gradient convergence limk ∥∇f(xk)∥ = 0 under standard assumptions (Theorem 4.1).

The key idea is to analyze the repeated crossings of the iterates between small-gradient

and large-gradient regions: the Lipschitz continuity of ∇f forces each crossing to cover a

positive distance, while the step-size dynamics ensure that each crossing costs a function

decrease bounded below relative to the distance traveled. Since the total function decrease

is finite, these crossings cannot occur infinitely often, giving a contradiction. We have also

extended this result to the locally Lipschitz setting, showing that every limit point of the

iterates is stationary (Theorem 5.1).

We close with two open questions.

• Our analysis requires the step-size expansion factor γ > 1 in Algorithm 2.1. The

classical theory allows γ = 1, i.e., no expansion on successful steps. Can the full-limit

result limk ∥∇f(xk)∥ = 0 still be established when γ = 1?

• Can these results be extended to probabilistic direct-search methods [8]? In particular,

does the gradient norm converge to zero almost surely under appropriate probabilistic

assumptions on the direction sets?

References

Audet_Dennis_2006 [1] C. Audet and J. E. Dennis, Jr. Mesh adaptive direct search algorithms for constrained

optimization. SIAM J. Optim., 17:188–217, 2006.

Audet_Hare_2017 [2] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer, Cham, 2017.

Bergou_Diouane_Kungurtsev_Royer_2025 [3] E. H. Bergou, Y. Diouane, V. Kungurtsev, and C. W. Royer. Direct-search methods for

decentralized blackbox optimization. arXiv:2504.04269, 2025.

12



Cavarretta_Goyens_Royer_Yger_2025 [4] B. Cavarretta, F. Goyens, C. W. Royer, and F. Yger. Complexity guarantees and polling

strategies for Riemannian direct-search methods. arXiv:2511.15360, 2025.

Conn_Scheinberg_Vicente_2009b [5] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization,

volume 8 of MOS-SIAM Ser. Optim. SIAM, Philadelphia, 2009.

Dodangeh_Vicente_Zhang_2016 [6] M. Dodangeh, L. N. Vicente, and Z. Zhang. On the optimal order of worst case complexity

of direct search. Optim. Lett., 10:699–708, 2016.

Dzahini_Rinaldi_Royer_Zeffiro_2025 [7] K. J. Dzahini, F. Rinaldi, C. W. Royer, and D. Zeffiro. Direct-search methods in the

year 2025: Theoretical guarantees and algorithmic paradigms. EURO J. Comput. Optim.,

13:1–24, 2025.

Gratton_Royer_Vicente_Zhang_2015 [8] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic

descent. SIAM J. Optim., 25:1515–1541, 2015.

Kolda_Lewis_Torczon_2003 [9] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives

on some classical and modern methods. SIAM Rev., 45:385–482, 2003.

Larson_Menickelly_Wild_2019 [10] J. Larson, M. Menickelly, and S. M. Wild. Derivative-free optimization methods. Acta

Numer., 28:287–404, 2019.

Lucidi_Sciandrone_2002 [11] S. Lucidi and M. Sciandrone. On the global convergence of derivative-free methods for

unconstrained optimization. SIAM J. Optim., 13:97–116, 2002.

Torczon_1997 [12] V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim., 7:1–25,

1997.

Vicente_2013 [13] L. N. Vicente. Worst case complexity of direct search. EURO J. Comput. Optim., 1:143–153,

2013.

13


